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ABSTRACT: Improving an enzyme’s (thermo-)stability or tolerance against
solvents and detergents is highly relevant in protein engineering and
biotechnology. Recent developments have tended toward data-driven
approaches, where available knowledge about the protein is used to identify
substitution sites with high potential to yield protein variants with improved
stability, and subsequently, substitutions are engineered by site-directed or
site-saturation (SSM) mutagenesis. However, the development and
validation of algorithms for data-driven approaches have been hampered
by the lack of availability of large-scale data measured in a uniform way and
being unbiased with respect to substitution types and locations. Here, we
extend our knowledge on guidelines for protein engineering following a data-
driven approach by scrutinizing the impact of substitution sites on thermostability or/and detergent tolerance for Bacillus subtilis
lipase A (BsLipA) at very large scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439
possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform
conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important
protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein-engineering approaches,
and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields hot spot predictions with an up
to ninefold gain in precision over random classification.

1. INTRODUCTION

Improving a protein’s (thermo-)stability1−8 or tolerance against
solvents9−16 and detergents17−19 has become of utmost
importance in protein engineering: Considering that enzymes
are predominantly used as detergent additives20 and that the
global industrial enzyme market has been forecast to reach $7.0
billion by 2023 from $5.5 billion in 2018 makes it clear that an
increasing demand exists for enzymes that are adapted to harsh
temperature, solvent, and detergent conditions.20−22

Modifying protein stability based on rational approaches has a
long history,23,24 and a number of, usually, structure-based
algorithms have been developed that estimate the effect of a
substitution on the stability of a protein.25−28 However, despite
successful applications in single cases (e.g., see Table 2 in ref 20),
the general reliability of these approaches is still unsatis-
factory.25,29−32 One reason is that multiple attempts to identify
key features in protein sequences and/or structures associated
with protein stability have failed to paint a clear picture, which
makes it difficult to define rules of universal validity and general
applicability.20,33 Another reason lies in the data used in the
design and evaluation of rational design algorithms. The
ProTherm database,34,35 which has been most frequently used
for such endeavors, contains on average∼12 single,∼12 double,

and ∼1 multiple substitutions for each of the ∼1000 proteins
stored.33 Thus, while overall exhaustive, the data may not
include a sufficient number of variants per protein to
compensate for outliers and, therefore, may not allow a
stratification of the data to derive a generally applicable set of
rules. As such data, furthermore, originate from different
experimental methods, it is not surprising that different changes
in protein stability have been found associated with the same
variant.36 In addition, the data are strongly biased toward
substitutions to alanine, whereas it is very limited for some other
substitutions.37 Recently, comprehensive mutagenesis data on a
domain level associated with protein stabilities against a
denaturating agent have been reported as a means to overcome
these limitations.38

Following the principles of natural evolution, albeit on a
reduced time scale, protein engineering by directed evolution
has emerged as an attractive strategy to improve stability
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through iterative cycles of mutagenesis and screening or
selection.20,39 However, the highly labor-intensive method can
become technically challenging if beneficial mutations need to
be accumulated over generations of mutagenesis and screening
or selection to reach a desired effect.40 After all, evolution is not
good for problems that require multiple, simultaneous, low-
probability events.41 To successfully investigate the then
necessary large protein libraries, powerful automated techniques
for rapid high-throughput screenings were established.20,39

As an intermediate, third route recent developments have
tended toward data-driven approaches,42 where available
knowledge about the protein is used to first identify a
substitution site with high potential to yield protein variants
with improved stability, and second, substitutions are
engineered by site-directed (SDM) or site-saturation (SSM)
mutagenesis.33 The “knowledge” can arise from sequence
information,42,43 structure information,44−46 or computational
techniques.2,4,7,8,47,48 By such data-driven approaches, the
challenge of accurately predicting the effect of a substitution
on protein stability is circumvented, and substitution efforts are
guided to a few, distinguished sequence positions, making
subsequent combinations feasible. However, even with high-
throughput screening techniques, it is difficult to handle all
variants based on combinations of the 20 proteinogenic AAs at
more than six substitution sites (i.e., more than 206 = 6.4 × 107

variants).20,39,49,50

Here, to extend our knowledge on guidelines for time- and
cost-efficient protein engineering following a data-driven
approach, we scrutinize the impact of substitution sites on
thermostability or/and detergent tolerance for one protein at
very large scale. To do so, we systematically analyze a complete
experimental SSM library of BsLipA produced by us,15,16,19

which contains all 3439 theoretically possible single variants
(181 substitution sites of BsLipA × 19 naturally occurring AAs)
and was evaluated as to different protein stabilities under
respectively uniform conditions. Previously, the SSM library has
been characterized regarding solvent and detergent tolerance
(D) data.15,16,19 Here, we characterize the SSM library for the
first time regarding thermostability (T50) as well as combined
T50 and D data. BsLipA is a particularly interesting protein for
such analysis because a high-resolution X-ray crystal structure
(PDB ID: 1ISP, 1.3 Å) is known,51 which provides valuable
insights in atomic details. Furthermore, the protein has
considerable biotechnological importance,52,53 possesses an α/
β-hydrolase fold54 such that the impact of substitution sites at α-
helices, β-strands, and other secondary structure elements can
be tested, and has been used frequently as a model system in
related experimental and computational small-scale studies.7,8

Our systematic large-scale analysis focuses on the following
five aspects: (I) We determined the likelihoods to find
substitution sites showing significantly increased T50 or D and
investigated the frequencies and magnitudes of effects caused by
single AA substitutions. (II) We analyzed at which substitution
sites variants result with increased T50 or/and D across the
protein and compared the findings to randommutagenesis. (III)
From these results, we defined hot spot classes, i.e., classes of
substitution sites particularly promising to increase T50 or/and
D. (IV) We probed to what extent hot spots can be predicted
based on structure or sequence characteristics. (V) We tested
the predictive power of the rigidity theory-based approach
Constraint Network Analysis (CNA) previously applied in
related scenarios,2,4−8 i.e., how accurately hot spots can be

predicted as structural weak spots identified in a thermal
unfolding simulation of the protein.
The main outcomes from our analyses are that we provide

systematic and unbiased reference data at large scale for
thermostability measured as T50 values and detergent tolerance
measured as D for a biotechnologically important protein, we
identify and consistently define hot spot types for evaluating the
performance of data-driven protein-engineering approaches,
and we show that CNA-based hot spot prediction can yield a
gain in precision over random classif ication up to ninefold.

2. MATERIALS AND METHODS
2.1. Generation and Screening of the BsLipA SSM

Library toward Changes in T50 or D. The BsLipA library was
constructed by site-saturation mutagenesis (SSM) and site-
directed mutagenesis (SDM) as described by Frauenkron-
Machedjou et al.15,16 and Fulton et al.19 In the present study, we
defined all 3439 single variants (181 substitution sites of BsLipA
× 19 naturally occurring AAs) generated with SSM and SDM as
the “SSM library”.
Previously, the SSM library has been screened toward its

tolerance against four different classes of detergents: anionic
(sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammo-
nium bromide, CTAB), zwitterionic (3-[hexadecyl(dimethyl)-
azaniumyl]propane-1-sulfonate, SB3-16), and nonionic (poly-
oxyethylenesorbitan monooleate, Tween 80) by Fulton et al.19

Residual activities of the variants after incubation in the presence
of the respective detergent (D) were obtained as described in ref
19.
As to the screening procedure regarding thermostability, the

screening cultures were incubated as described in ref 19. The
culture supernatant was collected by centrifugation (1500 g, 40
min) and diluted 2.5-fold with Sørensen buffer (42.5 mL of
Na2HPO4 (8.9 g l−1), 2.5 mL of KH2PO4 (6.8 g l−1)) before
screening. The protein-containing supernatant was incubated in
a 0.2 mL PCR microtiter plate (MTP) in a programmable
thermal cycler (Eppendorf Mastercycler Thermal Cycler PCR).
The supernatant samples were incubated at temperatures
between 40 and 60 °C for 20 min. A dry block incubator
(MRK 23 Cooling-ThermoMixer, DITABIS) was equipped
with a “15 and 50 mL falcon tube adaptor” (BT 03, DITABIS).
Three falcon tubes with 19.8 mL of para-nitrophenyl palmitate
(pNPP) solution A (19.8 mL of Sørensen buffer, 45.54 mg of
sodium deoxycholate, 22 mg of gum arabic) were inserted into
the falcon tube incubator. All dry block incubators were set to 40
°C, 30 min prior to the beginning of the experiment. Twenty
seconds before the end of the incubation, 2.2 mL of pNPP
solution B (48 mg of pNPP in 8 mL of 2-propanol) was added
into prewarmed pNPP solution A and briefly mixed. The
substrate mixture was applied to the wells of the MTPs in 50 μL
aliquots to start the measurement of thermostability and
measured in a MTP reader (Molecular Devices Spectramax).
The enzymatic activity in each sample was measured by the rate
of increase in absorption at O.D. 410 nm. The residual activity in
each sample was calculated from the slope of the change in
absorption at O.D. 410 nm relative to the slope of the sample
heated to 40 °C during a measurement time of 3 min. From that,
T50 was obtained from the inflection point of a sigmoid curve fit.
Control experiments with just pNPP, or pNPP in the presence of
BsLipA at temperatures up to 60.6 °C, that way leading to
denaturation of BsLipA, show no change in the para-nitro-
phenolate (pNP) absorption over time, demonstrating that pNP
is only produced in the presence of a functional enzyme (Figure
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S1). The T50 values are provided as an Excel sheet in the
Supporting Information.
2.2. Global Characterization of BsLipA Variants’

Changes in T50 or D. For analyzing the changes in T50 (eq
1) or D (eq 2) of BsLipA variants, the values of wtBsLipA were
used as references; i.e., the differences between the values of the
variants and those of wtBsLipA were calculated. Positive
(negative)Δ-values indicate variants with increased (decreased)
T50 or D.

T T T Bs(variant) (wt LipA)50 50 50Δ = − (1)

D D D Bs(variant) (wt LipA)Δ = − (2)

For the large-scale analysis, only ΔT50 of variants higher
(lower) than the experimental uncertainty, taken as the standard
deviation σT for the respective variant determined from three
screenings of T50, were considered significantly increased
(decreased) in T50 compared to wtBsLipA. Furthermore, only
ΔD of variants higher (lower) than two times the experimental
standard deviation (2σD) of wtBsLipA determined from
screenings of 2997 wtBsLipA replicates19 toward the respective
detergent were considered significantly increased (decreased) in
D compared to wtBsLipA. Here, σD of wtBsLipA was used as
significance criterion, as the experimental standard deviation for
each variant was not available. 2σD was chosen because it
corresponds to a p-value below 0.05.
2.3. Definitions of Classes of BsLipA Substitution Sites.

The different classes of substitution sites regarding significantly
increased T50 or/and D were defined based on the set theory.
Therefore, the following binary operations on sets were applied:
The union of the sets A and B is the set of elements which are

in A, in B, or in both A and B (eq 3).55

A B x x A x B( ) :∪ = { ϵ ∨ ϵ } (3)

The intersection of the setsA and B is the set of elements which
are in A and B (eq 4).55

A B x x A x B( ) :∩ = { ϵ ∧ ϵ } (4)

Finally, the Jaccard index (J) was used to compare the
similarity of two sets A and B, i.e., the cardinal number of the
respective intersection divided by the cardinal number of the
respective union (eq 5).56,57 The range of J is [0, 1], with 1
indicating identical sets A and B.

J A B
A B
A B

( , ) = ∩
∪ (5)

Based on the different classes of substitution sites, we defined
hot spots, which are substitution sites particularly promising to
yield significantly increased T50 or/and D.
2.4. Structural Determinants of BsLipA Hot Spots. Hot

spots were assigned to groups according to their location in
secondary structure elements (yielding 20 subgroups), solvent-
accessible surface areas (SASAs) (yielding five subgroups), and
physicochemical properties (yielding five subgroups). The
secondary structure elements of the wtBsLipA crystal structure
(PDB ID: 1ISP with highest resolution of 1.3 Å51) were
identified with the DSSP program.58 Additionally, the SASAs of
the wtBsLipA were analyzed with the DSSP program.58 The
fractional solvent-accessible surface areas (fSASAs) were
calculated with respect to the maximum solvent-accessible
surface area of each hot spot (maxSASA) (eq 6).59

fSASA 100
SASA

maxSASA
= ·

(6)

As the screening studies were performed at pH 8,19 hot spots
were subgrouped by their physicochemical properties as follows:
aliphatic (Ile, Ala, Val, Leu, Gly), aromatic (Phe, Tyr, Trp),
neutral (Cys, Pro, Met, Ser, Thr, Asn, Gln), positively charged
(His, Lys, Arg), and negatively charged (Asp, Glu).

2.5. Conservation of wtBsLipA Residues within
Bacterial Lipases. Apart from the catalytic triad (S77, D133,
and H156), also variants at conserved sequence positions were
considered because the SSM library revealed significantly
increased T50 or/and D at such positions. The conservation of
wtBsLipA residues within the bacterial lipases was calculated
using the available sequences from the Pfam database60 for the
lipase class 2 (PF01674). The sequences were limited to the
bacterial sources, which contain 1138 sequences from 603
bacterial species. All sequences were aligned using Clustal
Omega.61,62 For the alignment, the full-length sequence of
wtBsLipA (UniProt ID: P37957) was used.63 The conservation
was calculated using AACon Calculations64 through Jalview.65

The conservation range is [0, 10] with 0 (10) showing no (high)
conservation.

2.6. Constraint Network Analysis. The Constraint
Network Analysis (CNA) aims at linking structural rigidity
and flexibility to the biomolecule’s structure, (thermo)stability,
and function.66−68 The CNA software acts as front- and back-
end to the graph theory-based rigidity analysis software Floppy
Inclusions and Rigid Substructure Topography (FIRST).69 In
CNA, proteins are modeled as constraint networks in a body-
and-bar representation, which has been described in detail by
Hesphenheide et al.70 Based on the modeled constraint network
of the protein structure, a pebble game algorithm decomposes the
network into flexible and rigid subparts.71,72 In order to monitor
the decay of network rigidity and to identify the rigidity
percolation threshold, CNA performs thermal unfolding simu-
lations by consecutively removing noncovalent constraints
(hydrogen bonds, including salt bridges) from a network in
increasing order of their strength.73 For this, a hydrogen bond
energy EHB is computed by a modified version of the potential by
Mayo et al.73 During the thermal unfolding simulations, phase
transitions can be identified where the network switches from
overall rigid to flexible states. For a given network state σ = f(T),
hydrogen bonds with an energy EHB > Ecut(σ) are removed from
the network at temperature T. In this study, the thermal
unfolding simulation was carried out by decreasing Ecut from
−0.1 to −6.0 kcal mol−1 with a step size of 0.1 kcal mol−1. Ecut
can be converted to a temperature T using the linear equation
introduced by Radestock et al. (eq 7).2,4 The range of Ecut is
equivalent to increasing the temperature from 302 to 420 K with
a step size of 2 K. Because hydrophobic interactions remain
constant or become even stronger as the temperature
increases,74,75 the number of hydrophobic tethers was kept
unchanged during the thermal unfolding simulation, as done
previously.7,8

T E
20 K

kcal mol
300 K1 cut= −

·
+− (7)

The CNA software is available under academic licenses from
http://cpclab.uni-duesseldorf.de/index.php/Software, and the
CNA web server is accessible at http://cpclab.uni-duesseldorf.
de/cna/.
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2.7. Generation of a Structural Ensemble of wtBsLipA.
MD simulations of wtBsLipA were carried out with the GPU-
accelerated version of PMEMD76 of the AMBER14 suite of
programs77 together with the ff14SB force field.78 As a starting
structure, the X-ray crystal structure of wtBsLipA (PDB ID:
1ISP) was used.51 Hydrogens were added, and side-chain
orientations (“flips”) of Asn, Gln, and His were optimized by the
REDUCE program79 based on suitable hydrogen-bonding
geometries and avoiding potential steric clashes. This was
done to take into account that O versus N or N versus C is
difficult to distinguish in X-ray crystallography experiments.79

For neutralization of the system, sodium counterions were
added. Subsequently, the system was solvated by a truncated
octahedral box of TIP3P water80 such that a layer of water
molecules of at least 11 Å widths covers the protein surface. The
particle mesh Ewald method81 was used with a direct-space
nonbonded cutoff of 8 Å. Bond lengths involving hydrogen
atoms were constrained using the SHAKE algorithm,82 and the
time step for the simulation was 2 fs. As done before,8 a
trajectory of 100 ns length was generated after thermalization
and adjustment of the pressure, simulating in the canonical
(NVT) ensemble at T = 300 K, with conformations extracted
every 40 ps from the last 80 ns, resulting in a structural ensemble
of 2000 conformations.We assessed the statistical independence
of the extracted conformations by calculating the autocorrela-
tion function of the cluster configuration entropy Htype2, the
measure used to identify phase transitions in the constraint
networks (see section 2.9 below) (Figure S2). Because
fluctuations of Htype2 decorrelate already within the first two
snapshots, the snapshots used for CNA, which were extracted at
time intervals of 40 ps, are considered independent.
2.8. Thermal Unfolding Simulation of wtBsLipA. For

analyzing the rigid cluster decomposition of wtBsLipA, a thermal
unfolding simulation was performed by CNA on an ensemble of
network topologies (ENTMD) generated from a molecular
dynamics (MD) trajectory. The ensemble-based CNA was
pursued to increase the robustness of the rigidity analy-
ses.5,83Subsequently, the unfolding trajectory was visually
inspected by VisualCNA84 for identifying secondary structure
elements that segregate from the largest rigid cluster at each
major phase transition. VisualCNA is an easy-to-use PyMOL
plug-in that allows setting up CNA runs and analyzing CNA
results linking data plots with molecular graphics representa-
tions.84 VisualCNA is available under an academic license from
https://cpclab.uni-duesseldorf.de/index.php/Software.
2.9. Local and Global Indices for Analyzing Structural

Rigidity of wtBsLipA. From the thermal unfolding simulation,
CNA computes a comprehensive set of indices to quantify
biologically relevant characteristics of the biomolecule’s
stability.85 Global indices are used for determining the flexibility
and rigidity at a macroscopic level. Local indices determine the
flexibility and rigidity at a microscopic level of bonds.
The cluster configuration entropy Htype2 is a global index,

which has been introduced by Radestock and Gohlke.2 Htype2 is
used to identify the phase transition temperature Tp at which a
biomolecule switches from a rigid to a floppy state and the
largest rigid cluster stops to dominate the whole protein
network. As long as the largest rigid cluster dominates the whole
protein network, Htype2 is low because of the limited number of
possible ways to configure a system with a very large cluster.
When the largest rigid cluster starts to decay or stops to
dominate the network, Htype2 jumps. There, the network is in a
partially flexible state with many ways to configure a system

consisting of many small clusters. The percolation behavior of
protein networks is usually complex, and multiple phase
transitions can be observed.2,4,5,7,8 In order to identify Tp, a
double sigmoid fit was applied to an Htype2 versus T(Ecut) curve
as done previously,2,4,5,7,8 andTp taken as thatT value associated
with the largest slope of the fit.
The stability map rcij is a local index, which has been

introduced by Radestock and Gohlke.4 rcij represents the local
stability within a protein structure for all residue pairs at which a
rigid contact rc between two residues i and j (represented by
their Cα atoms) is lost during the thermal unfolding. rc exists if i
and j belong to the same rigid cluster c of the set of rigid clusters
CEcut.85 Thus, rcij contains information cumulated over all
network states along the unfolding trajectory as to which parts
of the network are (locally) mechanically stable at a given σ and
which are not.7 This stability information is not only available in
a qualitative manner but also quantitatively in that each rcij has
been associated with Ecut at which the rigid contact is lost. The
sum over all entries in rcij represents the chemical potential
energy due to noncovalent bonding, obtained from the coarse-
grained, residue-wise network representation of the underlying
protein structure. To focus only on the stability of rc between
structurally close residues, rcij was filtered such that only rigid
contacts between two residues that are at most 5 Å apart from
each other were considered (neighbor stability map rcij,neighbor).
Finally, CNA predicts unfolding nuclei as structural features

from which macroscopic (in)stability originates.2 Unfolding
nuclei are represented by residues that percolate from the largest
rigid cluster at the latest phase transition. If such residues
become flexible, it will have a detrimental effect on protein
stability. Fringe residues of the unfolding nuclei percolate from
the largest rigid cluster during earlier steps of the thermal
unfolding. We follow the hypothesis that the more structurally
stable the fringes of unfolding nuclei are, the more structurally
stable will be those unfolding nuclei.2 Therefore, if such fringe
residues (termed weak spots) are targeted by substitutions, the
likelihood to stabilize the rigid core of a protein should be high.
If two unfolding nuclei were only separated by one residue, this
residue was also considered a weak spot. This procedure of
identifying weak spots is in agreement with a previous study by
us.2

2.10. Statistical Evaluation of CNA as a Binary
Classifier. The performance of CNA was investigated as a
binary classifier with the following possible outcomes: true
positives (TP) are predicted weak spots that are hot spots,
whereas false positives (FP) are predicted weak spots that are
non-hot spots. In turn, true negatives (TN) are predicted non-
weak spots that are non-hot spots, whereas false negatives (FN)
are predicted non-weak spots that are hot spots. Different
metrics were then applied to evaluate CNA.
The recall (r) answers the question how many hot spots were

predicted as weak spots (eq 8).86

r
TP

TP FN
No. of predicted weak spots that are hot spots

No. of hot spots

=
+

=
(8)

The precision (p) evaluates how many predicted weak spots
are actually hot spots (eq 9).86
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p
TP

TP FP
No. of predicted weak spots that are hot spots

No. of weak spots

=
+

=
(9)

The precision in random classif ication (prandom) indicates how

many of the 181 BsLipA residues are actually hot spots (eq

10).86

p

Bs

TP FN
TP FP TN FN

No. of hot spots
181 residues of LipaA

random = +
+ + +

=
(10)

The gain in precision over random classification (gip)

represents how many predicted weak spots are actually hot

spots in comparison to random classification (eq 11).86 The gip

Figure 1.Distribution of BsLipA variants’ changes in T50 or D toward one detergent. Distribution of BsLipA variants’ changes in (A) T50 (ΔT50) or D
(ΔD) with respect to (B) SDS, (C) CTAB, (D) SB3-16, and (E) Tween 80 at the indicated concentrations compared to wtBsLipA (ΔT50/ΔD = 0).
(A) Variants withΔT50 lower than the experimental uncertainty (standard deviation σT for the respective variant) were excluded from further analyses
(gray). (B−E) Variants within 2σD ofΔD of wtBsLipA determined from screenings of 2997 wtBsLipA replicates toward the respective detergent were
excluded from further analyses (gray). The insets show the numbers of variants which cause a significant increase or decrease in T50 or D toward one
detergent. A red (blue) color indicates a significantly increased (decreased) T50 or D toward one detergent.
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range is [0,∞], with values <1 indicating a lower precision than
obtained by random classification.

p
p

gip
random

=
(11)

The F1-score (F1) is a measure of the test’s accuracy. It
represents the harmonic mean of p and r; i.e., if there is an
uneven class distribution, it is used to seek a balance between p
and r (eq 12).87 The F1 range is [0, 1], with 1 indicating perfect r
and p.

F
p r

p r
21 = ·

·
+ (12)

2.11. Markov Chain Monte Carlo-Based Unfolding
Simulations of wtBsLipA. As an independent method to
assess the order of unfolding of wtBsLipA, we used a Markov
Chain Monte Carlo (MCMC) simulation with an all-atom
model restricted to dihedral degrees of freedom.88 This method
has been successfully used for protein-folding simulations89 and
has been shown to reproduce the order of melting temperatures
for a set of protein variants.90 In this MCMC model,
implemented in the open source tool ProFASi (Protein Folding
and Aggregation Simulator), the protein conformation is
modified by changing one or few dihedral angles in each step.
A step is accepted according to theMetropolis criterion, i.e., with
a probability that depends on the absolute temperature and the
resulting change of energy of the system. In ProFASi, the energy
is calculated by an all-atom implicit solvent force field.90,91While
MCMC simulations allow arbitrarily large changes to the
molecule, the unfolding simulations for this study have been
restricted to side chain dihedral updates and small, locally
correlated updates of main chain dihedral angles.92 To ensure
adequate sampling, 96 MCMC simulations at 330 K were
performed with a total of 3.05 × 1010 elementary updates.

3. RESULTS
3.1. About One-Tenth of All Variants in the Complete

SSM Library Show Significantly Increased T50 or D
toward at Least One Detergent, and Such Variants

Were Found at Two-Thirds of All Substitution Sites. The
BsLipA SSM library contained T50 as well as D data toward the
four detergents SDS, CTAB, SB3-16, and Tween 80 for all 3439
single variants (181 substitution sites of BsLipA × 19 naturally
occurring AAs), including also inactive variants (see section
2.1). Initially, the results of both experimental screening studies
of the SSM library with respect to changes in T50 (ΔT50) or D
toward one detergent (ΔD) were assessed in terms of the
variance of the data and its significance (see section 2.2).
As to theT50 data, only variants withΔT50 higher (lower) than

the experimental uncertainty, taken as the standard deviation σT
for the respective variant determined from three screenings of
T50, were considered significantly increased (decreased) in T50
compared to wtBsLipA (ΔT50 = 0 K) (eq 1). The average σT is
0.44 K. In total, 1856 variants with significantly increased T50
were obtained, of which 214 (∼12%) show an increase and 1642
(∼88%) a decrease (Figure 1A, Table S1). This proportion
represents what one would obtain in the case of random
mutagenesis. The distribution of ΔT50 is left-skewed, with
extremeΔT50 values of−8.3 and +7.7 K, with the most frequent
ΔT50 range being −2 to −1.5 K (∼12% out of 1856 variants),
followed by ΔT50 between −1.5 and −1 K (∼10% out of 1856
variants) (Figure 1A). In turn, for each of 69 substitution sites
(∼38% out of 181 substitution sites) at least one variant with
significantly increased T50 was found. These substitution sites
are summarized in class I (I = {Substitution sitex | 1 ≤ x ≤ 181,
T50(x) is significantly increased}) (Tables 1 and S2).
Likewise, only variants with ΔD higher (lower) than two

times the experimental standard deviation (2σD) of wtBsLipA
determined from screenings of 2997 wtBsLipA replicates19

toward the respective detergent were considered significantly
increased (decreased) inD compared to wtBsLipA (ΔD = 0) (eq
2). The screening revealed the highest σD in the presence of SB3-
16, followed by Tween 80, CTAB, and SDS (Table S1).19 This
may be related to the fact that SB3-16 and Tween 80 were tested
above the critical micelle concentration (cmc), while CTAB and
SDS were tested below it.19,93 The respective detergent
concentration had been chosen based on the inactivation of
purified wtBsLipA (Table S1).19 On average, 900 variants with

Table 1. Identified Classes of Substitution Sites

classa definition no. of substitution sites no. of weak spotsb gipc

I {substitution sitex | 1 ≤ x ≤ 181, T50(x) is significantly increased} 69 ndd ndd

II {substitution sitex | 1 ≤ x ≤ 181, DSDS(x) is significantly increased} 74 ndd ndd

III {substitution sitex | 1 ≤ x ≤ 181, DCTAB(x) is significantly increased} 42 ndd ndd

IV {substitution sitex | 1 ≤ x ≤ 181, DSB3‑16(x) is significantly increased} 46 ndd ndd

V {substitution sitex | 1 ≤ x ≤ 181, DTween80(x) is significantly increased} 34 ndd ndd

VI II ∪ III ∪ IV ∪ V 109 ndd ndd

VII I ∪ VI 124 ndd ndd

VIII II ∩ III ∩ IV ∩ V 11 2 3.30
IX I ∩ VIII 7 2 5.17
X {substitution sitex | 1 ≤ x ≤ 181, six highest effects in significantly increased T50(x)} 6 1 3.02
XI {substitution sitex | 1 ≤ x ≤ 181, six highest effects in significantly increased DSDS(x)} 6 1 3.02
XII {substitution sitex | 1 ≤ x ≤ 181, six highest effects in significantly increased DCTAB(x)} 6 3 9.05
XIII {substitution sitex | 1 ≤ x ≤ 181, six highest effects in significantly increased DSB3‑16(x)} 6 2 6.03
XIV {substitution sitex | 1 ≤ x ≤ 181, six highest effects in significantly increased DTween80(x)} 6 0 −
XV XI ∪ XII ∪ XIII ∪ XIV 20 ndd ndd

XVI X ∪ XV 24 ndd ndd

XVII XI ∩ XII ∩ XIII ∩ XIV 0 ndd ndd

XVIII X ∩ XVII 0 ndd ndd

aClass of substitution sites; underlined classes represent hot spots. bNumbers of hot spots that are predicted as weak spots. cGain in precision over
random classification (eq 11). dNot determined.
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significantly increased D were obtained, of which 126 (∼14%)
show an increase and 774 (∼86%) a decrease, on average across
each detergents (Figures 1B−E, Table S1). This proportion
represents what one would obtain in the case of random
mutagenesis. The distribution of ΔD is left-skewed. The
magnitude of the increase (decrease) in ΔD is between 1.6-
fold and 2.4-fold (0.6-fold and 2.9-fold) of the residual activity of
wtBsLipA. Furthermore, variants tested against SDS and SB3-16
showed an up to two times higher ΔD than against CTAB and
Tween 80 (Figures 1B−E). This may be related to the different
classes of the detergents.19,93 In turn, for each of 74, 42, 46, or 34
substitution sites at least one variant with significantly increased
D toward SDS, CTAB, SB3-16, or Tween 80 (∼41, 23, 25, or
19% out of 181 substitution sites) was found. These substitution
sites are summarized in classes II−V (II−V = {Substitution sitex
| 1 ≤ x ≤ 181, DSDS/CTAB/SB3‑16/Tween 80(x) is significantly
increased}) (Tables 1 and S2). The union of II−V contains 109
substitution sites (∼60% out of 181 substitution sites) and is
represented by class VI (VI = II ∪ III ∪ IV ∪ V) (Tables 1 and
S2, eq 3). For each of these substitution sites at least one variant
shows significantly increased D toward at least one detergent.

Finally, 124 substitution sites are summarized in the union of I
and VI (∼69% out of 181 substitution sites) (VII = I ∪ VI)
(Tables 1 and S2, eq 3). Thus, only for two-thirds of all
substitution sites at least one variant with significantly increased
T50 or D toward at least one detergent was obtained.
To conclude, for the first time, we performed a systematic

large-scale analysis of a complete experimental SSM library
toward two types of stabilities of one protein containing all single
variants. The likelihoods to generate variants with significantly
increased T50 (∼12%) or D toward one detergent (∼14% on
average across all detergents) by randommutagenesis (I−V) are
similar. Variants with significantly increased T50 or D toward at
least one detergent were obtained at only two-thirds of all
substitution sites (VII), and this value falls to about one-third or
below if T50 and D toward one detergent are considered
separately (I−V). Hence, such substitution sites are not
uniformly distributed across the protein. For the following
analyses, only substitution sites with at least one variant yielding
significantly increased T50 or D toward at least one detergent
were considered.

3.2. The Higher the Frequency of Substitution
Occurrences That Lead to Significantly Increased T50 or

Figure 2. Localization of BsLipA variants as to the frequency of substitution occurrences and highest effects regarding significantly increasedT50 or D
toward one detergent. (A) Themaximum number of substitutions that cause significantly increased (A)T50 (NBsLipA;T) of I (I = {Substitution sitex | 1≤
x ≤ 181, T50(x) is significantly increased}) or (B) D (NBsLipA;D) of II−V (II−V = {Substitution sitex | 1 ≤ x ≤ 181, DSDS/CTAB/SB3‑16/Tween 80(x) is
significantly increased}) are mapped onto wtBsLipA (PDB ID: 1ISP). Cα atoms of the catalytic triad S77/D133/H156 are shown as green spheres. A
red (gray) color indicates a high (low)NBsLipA;T of I orNBsLipA;D of II−V. (C)R2- and p-values for correlations betweenNBsLipA;T of I orNBsLipA;D of II−V.
(D) Additionally, an analysis of the respective highest effects in significantly increased T50 (ΔT50; max) of I orD (ΔDmax) of II−V was performed. Here,
R2- and p-values for correlations between ΔT50; max of I or ΔDmax of II−V are shown. (E) R2- and p-values for correlations between NBsLipA;T and
ΔT50;max of I or NBsLipA;D and ΔDmax of II−V.
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D toward One Detergent, the More Pronounced the
Highest Effect, and Vice Versa. Next, we investigated the
BsLipA SSM library regarding the respective frequency of
substitution occurrences at substitution sites that lead to
significantly increased T50 (NBsLipA;T) or D (NBsLipA;D) toward
one detergent. Additionally, we analyzed the respective highest
effects in significantly increased T50 (ΔT50;max) or D (ΔDmax)
toward one detergent at substitution sites. Finally, we address
the question if the frequency of substitution occurrences and the
highest effects per substitution site are related to each other.
The highest NBsLipA;T of I was 12 (F17) (Figure 2A), whereas

the highestNBsLipA;D of II−Vwere 14 (E65), 6 (I135 and D144),
11 (G46), and 5 (V99) (Figure 2B, Table S14), respectively,
indicating that up to ∼60% and more of the variants for some
substitution sites yield significantly increased T50 or D toward
one detergent. Correlations between NBsLipA;T of I and NBsLipA;D
of II−V yielded, on average, R2 = 0.03; p > 0.1 (Figure 2C, Table
S3). The highest correlation was found between NBsLipA;T of I
and NBsLipA;D of II (R2 = 0.07, p < 0.001). With respect to
NBsLipA;D of II−V, overall very weak to weak but mostly
significant correlations were obtained (on average:R2 = 0.11, p <
0.01) (Figure 2C, Table S3). The highest correlation was
observed between NBsLipA;D of III and IV (R2 = 0.26, p < 0.001).
The highest ΔT50;max of I was 7.7 K (M137), whereas the

highest ΔDmax of II−V were 1.49 (M137), 1.63 (T110), 2.41
(G46), and 2.29 (S127), respectively (Table S9), indicating that
specific single AA substitutions have a great impact on the
magnitudes of the effects. Correlations between ΔT50;max of I
andΔDmax of II−V shown, on average, R2 = 0.06; p > 0.1 (Figure
2D, Table S4). The highest correlation was observed between
ΔT50;max of I and ΔDmax of IV (R2 = 0.13, p < 0.1). With respect
to ΔDmax of II−V, overall very weak to weak and mostly
insignificant correlations were obtained (on average:R2 = 0.08, p
> 0.1) (Figure 2D, Table S4). The highest correlations were
observed betweenΔDmax of II andV (R2 = 0.24, p < 0.05) as well
as ΔDmax of III and IV (R2 = 0.13, p < 0.1).
Finally, mostly good to fair and significant correlations

betweenNBsLipA;T andΔT50;max of I as well asNBsLipA;D andΔDmax
of II−Vwere found (on average for increase:R2 = 0.27, p < 0.01)
(Figure 2E, Table S5).
To conclude, these findings indicate that the relation “the

higher the frequency of substitution occurrences that lead to
significantly increased T50 orD towards one detergent, the more
pronounced the highest effect, and vice versa” holds for
substitution sites at which at least one variant shows significantly
increased T50 or D toward one detergent (I−V). Together with
the results from the previous chapter, this result suggests that
identifying a priori substitution sites with a high likelihood for
significantly increasedT50 orD toward one detergent will also be
beneficial with respect to the magnitude of effects that can be
achieved there by substitutions.
3.3. Eleven Substitution Sites Yield a ∼4.6-fold Higher

Likelihood To Find for Each Detergent Variants with
Significantly Increased D than Random Mutagenesis.
Next, we focused on pairwise intersections of II−V to investigate
if there are substitution sites at which for two detergents at least
one variant shows significantly increased D, regardless of the
magnitude of the single effect (see section 2.3). We compared
the pairwise similarities between II−V by calculating the Jaccard
index (J), i.e., the cardinal number of the respective intersection
divided by the cardinal number of the respective union (Table
S6, eq 5).56,57 The highest similarity was found between III and
IV with J(III, IV) = 0.47, whereas the lowest similarity was

observed between II and V with J(II, V) = 0.23. This may be
related to the different classes of the detergents19,93

Encouraged by the findings of overlapping II−V, we also
looked at the overall intersection of II−V (VIII = II∩ III∩ IV∩
V), i.e., substitution sites at which for each detergent at least one
variant shows significantly increased D, regardless of the
magnitude of the single effect (Tables 1 and S2, eq 4). VIII
contains the 11 substitution sites E2, G13, D43, T45, Y49, N51,
V54, E65, N98, M134, and M137 (∼6% out of 181 substitution
sites) (Tables 1, S2, and S14). These substitution sites are
associated with 50 variants causing a significant change in D, of
which 32 (∼64%) show a significant increase, on average across
all detergents (Table S7). Thus, this likelihood is ∼4.6-fold
higher in comparison to random mutagenesis. The most
promising substitution sites of VIII are M134, N51, and T45
with variants showing increased ΔDmax of 2.25, 2.10, and 1.90,
respectively.
To conclude, a dramatically reduced number of 11

substitution sites (VIII) yield a ∼4.6-fold higher likelihood to
find for each detergent variants with significantly increased D
compared to random mutagenesis. These findings indicate that
if a protein-engineering study aims at identifying variants
showing significantly increased D toward each detergent, such
substitution sites (VIII) should be identified prior to SDM.

3.4. Seven Substitution Sites Yield a ∼3.4-fold Higher
Likelihood To Find Variants with Significantly Increased
T50 and a ∼4.7-fold Higher Likelihood To Find for Each
Detergent Variants with Significantly Increased D than
Random Mutagenesis. The same analyses were repeated for
intersections of I and II−V, respectively, regarding substitution
sites at which at least one variant shows significantly increased
T50 and for one detergent significantly increasedD, regardless of
the magnitude of the single effect (see section 2.3). We
compared the pairwise similarities between I and II−V,
respectively, by calculating J (Table S6, eq 5). The highest
similarity was found between I and II with J(I, II) = 0.42,
whereas the lowest similarity was observed between I andVwith
J(I, V) = 0.16.
Encouraged by the findings of overlapping I and II−V,

respectively, we also looked at the overall intersection of I and
II−V (IX = I ∩ VIII), i.e., substitution sites at which at least one
variant shows significantly increased T50 and for each detergent
significantly increased D, regardless of the magnitude of the
single effect (Tables 1 and S2, eq 4). IX contains the seven
substitution sites, E2, G13, T45, Y49, V54, M134, and M137
(∼4% out of 181 substitution sites) (Tables 1, S2, and S14).
Associated with these are 86 variants causing a significant change
in T50, of which 35 (∼41%) show a significant increase (Table
S8). Thus, this likelihood is ∼3.4-fold higher in comparison to
random mutagenesis. The most promising substitution sites of
IX are M137, M134, and Y49 with variants showing increased
ΔT50;max of 7.7, 5.6, and 1.6 K, respectively. Furthermore,
associated with substitution sites of IX are 29 variants causing a
significant change in D, of which 19 (∼66%) show a significant
increase, on average across all detergents (Table S8). Thus, this
likelihood is ∼4.7-fold higher in comparison to random
mutagenesis. The most promising substitution sites of IX are
M134, T45, andM137 with variants showing increasedΔDmax of
2.25, 1.90, and 1.67, respectively.
To conclude, a dramatically reduced number of seven

substitution sites (IX) yield a ∼3.4-fold higher likelihood to
find variants with significantly increased T50 and a ∼4.7-fold
higher likelihood to find for each detergent variants with
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significantly increased D compared to random mutagenesis.
These findings indicate that if a protein-engineering study aims
at identifying variants showing significantly increased T50 and D
toward each detergent, such substitution sites (IX) should be
identified prior to SDM.
3.5. Six Substitution Sites with Highest ΔT50;max

(ΔDmax) Yield a ∼5.3-fold (∼4.5-fold) Higher Likelihood
To Find Variants with Significantly Increased T50 (D) than
Random Mutagenesis. The above analyses focused on
substitution sites at which significantly increased T50 or D
toward one detergent (I−V), significantly increased D toward
each detergent (VIII), as well as significantly increased T50 and
D toward each detergent (IX) were observed, regardless of the
magnitude of the effect. Now, we identified those six substitution
sites for which the respective highest effects (ΔT50;max orΔDmax)
were found. The number of 6 is motivated by the current
technical limitation to screen more than 206 variants.20,39,49,50

The six substitution sites M137, M134, G155, F17, I157, and
Y139 yield variants with the highestΔT50; max of 7.7, 5.6, 4.5, 3.8,
3.6, and 3.2 K, respectively, and constitute class X (X =
{Substitution sitesx | 1 ≤ x ≤ 181, six highest effects in
significantly increased T50(x)}) (Tables 1, S2, and S9). The
substitution sites of X are associated with 68 variants causing a
significant change in T50, of which 43 (∼63%) yield a
significantly increased T50 (Table S10). Thus, this likelihood is
∼5.3-fold higher in comparison to random mutagenesis.
The most promising substitution sites exhibiting variants with

the highest ΔDmax toward one detergent (XI−XIV =
{Substitution sitesx | 1 ≤ x ≤ 181, six highest effects in
significantly increased DSDS/CTAB/SB3‑16/Tween 80(x)}) are M137
(XI), T110 (XII), G46 (XIII), and S127 (XIV) with variants
showing highestΔDmax of 1.49, 1.63, 2.41, and 2.29, respectively
(Tables 1, S2, and S9). With these substitution sites, 43 variants
are associated causing a significant change in D, of which 27
(∼63%) cause significantly increased D, on average across all
detergents (Table S10). Thus, this likelihood is∼4.5-fold higher
in comparison to random mutagenesis.
Furthermore, we determined the union of XI−XIV, the set of

20 substitution sites (∼11% out of 181 substitution sites) that
yield variants showing the respective highest ΔDmax toward at
least one detergent (XV =XI∪XII∪XIII∪XIV) (Tables 1 and
S2, eq 3). Additionally, the union ofX andXVwas defined as the
set of 24 substitution sites (∼13% out of 181 substitution sites),
which exhibit variants showing the respective highestΔT50;max or
ΔDmax toward at least one detergent (XVI = X ∪ XV) (Tables 1
and S2, eq 3).
The intersection betweenXI−XIV (XVII =XI∩XII∩XIII∩

XIV) is empty; i.e., there are no common substitution sites
among those six at which for each detergent variants with highest
ΔDmax were found (Tables 1 and S2, eq 4). The intersection
between X and XVII (XVIII = X ∩ XVII) is necessarily empty,
too; i.e., there are no common substitution sites among those six
at which variants with highest ΔT50;max and ΔDmax for each
detergent were found (Tables 1 and S2, eq 4). Thus, XVII and
XVIII were not considered for the following analyses.
Additionally, we compared the pairwise similarities between

X−XIV by calculating J (eq 5). Regarding the highest ΔDmax,
only XII and XIII overlap to some extent (J(XII, XIII) = 0.2)
(Table S6). Regarding the highest ΔT50;max and ΔDmax, only X
and XI, XII, or XIII, respectively, slightly overlap (J(X, XI) ≈
J(X, XII) ≈ J(X, XIII) = 0.1) (Table S6).
To conclude, a highestΔT50; max of 7.7 K and a highestΔDmax

of 2.41 were found. The six substitution sites with highest

ΔT50;max yield a ∼5.3-fold higher likelihood to find variants with
significantly increased T50 (X); the six substitution sites with
highestΔDmax yield a∼4.5-fold higher likelihood to find variants
with significantly increasedD (XI−XIV). There are no common
substitution sites among those six at which for each detergent
variants with highest ΔDmax were found (XVII). Neither are
there common substitution sites among those six at which
variants with highest ΔT50;max and ΔDmax for each detergent
were found (XVIII).

3.6. Definition of Hot Spots. Based on these results, we
defined seven types of hot spots, i.e., substitution sites
particularly promising to cause a significant increase in T50 or/
and D. First, the respective six substitution sites of X−XIV are
considered hot spots because variants yield the respective
highest ΔT50;max or ΔDmax toward one detergent for these
substitution sites (Tables 1, S2, and S9). Furthermore, we
showed that there is a correlation between the magnitude of an
effect found at a substitution site and the frequency of
substitution occurrences that lead to significantly increased
T50 or D toward one detergent (see section 3.2). Finally,
generating and evaluating variants based on combinations of all
20 AAs at six substitution sites is still manageable with current
protein-engineering techniques.20,39,49,50

As shown above, XVII and XVIII, which would constitute the
substitution sites with the broadest impact on ΔDmax, or
ΔT50; max and ΔDmax, are empty (see section 3.5). Hence, we
resorted to defining, second, the 11 substitution sites of VIII
showing significantly increased D toward each detergent,
regardless of the magnitude of the single effect (see section
3.3) and, third, the seven substitution sites of IX showing
significantly increased T50 and D toward each detergent,
regardless of the magnitude of the single effect (see section
3.4) as hot spots (Tables 1 and S2). With 11 and 7 substitution
sites, these classes are also the smallest besides X−XIV.

3.7. Hot Spots Are Diverse in Terms of Localization in
Secondary Structure Elements, Degree of Burial, and
Sequence-Based Characteristics of the Substituted AAs.
Ideally, one would identify such hot spots based on structural or
sequence characteristics of the protein (see sections 2.4 and 2.5)
prior to performing experiments. Suitable structure-based
characteristics are localization in secondary structure elements
(Table S11)19,94−96and the degree of burial as measured by
fSASAs (Table S12, eq 6).19,97,98

As to localization in secondary structure elements (Table
S11), hot spots are rarely found in 310-helices and β-strands.
Exceptions are hot spots of class XIV, which are enriched in
strand β7.With respect to α-helices, at least one and at most four
hot spot(s) of each class is (are) found in that secondary
structure class, mainly in helices αB and αE. However, without
further information, one would not know which particular
secondary structure element to choose for hot spot prediction.
Hence, if all sites of a certain secondary structure class were
chosen as hot spots, in the best case, a gain in precision (gip, eq
11) over random classification of 4.71 is found for β-strands,
albeit at the expense of predicting 32 substitution sites (∼18% of
181 AAs), far more than the 6 sought. As to bridges, turns, loops,
and bends defined by DSSP,58 no hot spot is found in the first
secondary structure type. At most three hot spots are found in
any of the other three types, but only for hot spots of classXI and
VIII. These cases are related to a maximal gip of 1.93, albeit at
the expense of predicting 47 substitution sites (∼26% of 181
AAs). Thus, in our study, identifying hot spots based on this
secondary structure type results in a low precision.
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As to the degree of burial (Table S12), the least hot spots are
associated with substitution sites that are mostly solvent-
exposed (0.8 < fSASA≤ 1.0). By contrast, the most hot spots are
associated with substitution sites that are partially solvent-
exposed (0.6 < fSASA ≤ 0.8), although this statement does not
hold for hot spots of class XIV. This case is related to a maximal
gip of 6.70, albeit at the expense of predicting 18 substitution
sites (∼10% of 181 AAs).
Suitable sequence-based characteristics are physicochemical

properties of the substituted AAs (Table S13)19,99−101 and the
degree of AA conservation (Table S14).19,102,103 As to the
physicochemical properties of the substituted AAs (Table S13),
the distribution of hot spots over the classes is generally broad.
Exceptions are hot spots of classes XIII and XIV (in both cases
preferentially found at aliphatic and neutral AAs (Table S15))
and class X (preferentially found at aliphatic, aromatic, and
neutral AAs (Table S15)). Therefore, gip values are generally
low, with the largest one being 4.02 for the case of hot spots of
class X at aromatic AAs, albeit at the expense of predicting 15
substitution sites (∼8% of 181 AAs). As to the degree of AA
conservation, hot spots are located at nonconserved and

semiconserved positions (conservation in the range of 0−6)
(Table S14). The highest conservations were found for I128
(conservation = 6) and V99, T126, and I128 (conservation = 5).
To conclude, while predicting hot spots based on structural

characteristics can lead to marked gip values, usually many
predicted hot spots result, which would require considerable
experimental efforts. Still, if a higher number of predicted hot
spots is acceptable, partially solvent-exposed residues are good
hot spot candidates. Applying sequence-based characteristics,
substituting aliphatic and neutral residues should more likely
improve T50 or/and D. Additionally, nonconserved and
semiconserved regions preferentially contain hot spots.

3.8. Rigidity Theory-Based (CNA) and Markov Chain
Monte Carlo Simulation-Based (ProFASi) Approaches
Predict Similar Thermal Unfolding Pathways of wtBsLi-
pA.We intend to test if hot spots can be predicted as structural
weak spots by our rigidity theory-based approach CNA66−68

(see section 2.6). As a prerequisite, information on the hierarchy
of rigid and flexible regions in a protein structure is required.
Therefore, a thermal unfolding simulation of wtBsLipA was
carried out with CNA as done previously7,8 to predict major

Figure 3. Prediction of the thermal unfolding pathway of wtBsLipA. (A) Thermal unfolding pathway of wtBsLipA (PDB ID: 1ISP) showing the early
(T1−T2) and late (T3−T5) phase transitions. Rigid clusters are represented as uniformly colored blue, green, magenta, and cyan bodies in the
descending order of their sizes. (B) For wtBsLipA the stability map rcij including Ecut values at which a rigid contact between two residues is lost for all
residue pairs during the thermal unfolding simulation (upper triangle); the neighbor stability map rcij,neighbor considering only the rigid contacts
between two residues that are at most 5 Å apart from each other, with values for all other residue pairs colored gray (lower triangle). The Ecut values are
calculated with CNA based on a structural ensemble (ENTMD). A red (blue) color indicates that contacts between residue pairs are more (less) rigid.
(C) The aforementioned rcij,neighbor (lower triangle) was compared with a contact map simulated by ProFASi (upper triangle). A red (blue) color
indicates contacts between residue pairs that have a longer (shorter) lifetime (inMC sweeps) than the contacts of the residue pairs of the initial protein
structure. 310-helices are represented as G-helices.
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phase transitions at which the network switches from overall
rigid to flexible states (see sections 2.7, 2.8, and 2.9).
From the thermal unfolding pathway of wtBsLipA, five major

phase transitions, T1−T5, were predicted based on the global
index Htype2 (Figure 3A). Depending on the energy cutoff Ecut,
the phase transitions were characterized as either early (T1−T2;
with−0.8 kcal mol−1≥ Ecut≥−0.9 kcal mol−1) or late (T3−T5;
with −1.7 kcal mol−1 ≥ Ecut ≥ −1.9 kcal mol−1). Ecut can be
converted to a temperature T using a linear equation (eq 7),2

according to which the ranges of Ecut in this study are equivalent
to 316 K ≤ T ≤ 318 K for T1−T2, and 334 K ≤ T ≤ 338 K for
T3−T5. During the early phase transitions αA, 310-1, αF, and
310-5 segregate from the largest rigid cluster. αD, αE, αB, αC,
and β-strands segregate from the largest rigid cluster during the
late phase transitions. Afterward, the β-sheet becomes
sequentially flexible, beginning with β4 and β8, followed by
β3, β7, β5, and β6. For the analysis, ∼3 h of computational time
on a single GPU is required to generate a 100 ns long MD
trajectory as well as ∼4 h of computational time on a single core
for the thermal unfolding simulation.
Since the percolation behavior of a protein network is

complex due to the protein’s structural hierarchy and
composition of different modules, it is often challenging to
assign a phase transition withHtype2.

85 Thus, in addition to using
Htype2, we also characterized the hierarchy of rigid and flexible
regions of wtBsLipA at a local level by computing rcij,neighbor
(lower triangle in Figure 3B) based on rcij (upper triangle in
Figure 3B). rcij,neighbor showed that residue pairs at the N-
terminus revealed higher Ecut values than residue pairs at the C-
terminus. Thus, rcij,neighbor demonstrates that the rigid contacts
between neighboring residues are stronger at the N-terminus
than at the C-terminus along the thermal unfolding simulation,
i.e., the C-terminus of wtBsLipA starts to unfold first.
As an independent approach to assess the order of unfolding

of wtBsLipA, we used theMarkov ChainMonte Carlo (MCMC)
simulation software ProFASi (Protein Folding and Aggregation
Simulator) (see section 2.11).88 The results of the simulation
were represented in a contact map (upper triangle in Figure 3C).
They reveal that the contacts between the residue pairs of theN-
terminus have a longer lifetime (in terms of MC sweeps) than
the contacts of the residue pairs of the C-terminus compared to
the initial structure. Thus, although methodologically different,
ProFASi predicts a very similar unfolding pathway of wtBsLipA
with respect to CNA.
To conclude, five major phase transitions, T1−T5, were

predicted by thermal unfolding simulations using CNA at which
first the different helices and, finally, the β-strands segregate
from the largest rigid cluster during thermal unfolding
simulations of wtBsLipA by CNA. Structural rigidity is initially
lost at the C-terminus, which is uniformly revealed by the global
index Htype2 and the local index rcij,neighbor. Finally, the two
independent approaches CNA and ProFASi predict very similar
unfolding pathways of wtBsLipA. The results suggest that the
loss of rigidity predicted by CNA along the thermal unfolding
simulation closely mimics the temperature-induced unfolding of
wtBsLipA.
3.9. Unfolding Nuclei andMajor Phase Transitions Are

Predictive Markers of Structural Weak Spots. We next
probed to what extent structural weak spots predicted by CNA
agree with the above-defined hot spots. Following previous
work,2 weak spots are fringe residues of unfolding nuclei that
percolate from the largest rigid cluster during earlier steps of the
thermal unfolding (see section 2.9). In total, we predicted 10

weak spots (∼6% out of 181 substitution sites), i.e., I12, G13,
G46, G52, P53, T66, M134, I135, V136, and H152 (Figure 4A,
Tables 1, 2, and S2). Three weak spots each segregate from the
largest rigid cluster at T1 or T2, and four from the largest rigid
cluster at T4 (Table 2).

The performance of predicting hot spots as weak spots by
CNA was evaluated in terms of a binary classification,
considering predicted weak spots at hot spots true positives
(TP) and predicted weak spots at not-hot spots false positives
(FP) (see section 2.10). In particular, the gain in precision over
random classification (gip) (eq 11) and the F1-score (F1) (eq
12), a measure of a classifier’s accuracy, were used as
performance measures. Over all seven classes of hot spots,
between one and three of the predicted weak spots are hot spots
(except for XIV, where no weak spot was met), resulting in gip

Figure 4. Localization of CNA-predicted weak spots and experimental
hot spots ofBsLipA. (A)Weak spots and (B) hot spots ofX, (C)XI, (D)
XII, (E) XIII, (F) XIV, (G) VIII, and (H) IV are mapped onto
wtBsLipA (PDB ID: 1ISP). (A) Ten weak spots, i.e., I12, G13, G46,
G52, P53, T66, M134, I135, V136, and H152, were predicted by CNA
(red spheres). (B−F) The respective six substitution sites ofX−XIV are
considered hot spots as variants yield the respective six highestΔT50;max
orΔDmax toward one detergent for these substitution sites. (G) The 11
substitution sites of VIII showing significantly increased D toward each
detergent, regardless of the magnitude of the single effect, and (H) the
seven substitution sites of IX showing significantly increased T50 and D
toward each detergent, regardless of the magnitude of the single effect,
are considered hot spots. A green sphere represents a hot spot, and an
orange sphere indicates a hot spot that was correctly predicted as a weak
spot.
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values between 3.02 and 9.05 (Tables 1 and S2). Note that these
results are associated with only 10 predicted weak spots, about
half as many predictions than in the case of identifying hot spots
as partially solvent-exposed residues (Table S12). As the
numbers of hot spots in VIII−XIV are of a very similar
magnitude, the CNA predictions are also associated with similar
recall (r) (eq 8) and precision (p) values (eq 9) in each case
(Table S2), indicating a well-balanced classifier. In the case of
XII, the CNA predictions yield an F1-score of 0.38, higher than
any F1-score associated with hot spot predictions based on
structure or sequence characteristics (Tables S2, S11, S12, S13,
and S14), and the F1-score for IX is 0.24, generally higher than
F1-scores associated with structure- or sequence-based pre-
dictions for this class and on par with the result obtained for
identifying these hot spots as partially solvent-exposed residues
(Tables S2, S11, S12, S13, and S14).
To conclude, predicting hot spots as weak spots by CNA

results in several cases in very good to good gip values and good
to fair accuracies and is associated with a very low number of
predicted weak spots, such that also only few experimental
efforts are required later. Considering the low computing time
required to perform a CNA analysis, these results indicate that
applying CNA-based weak spot prediction before experimental
engineering is beneficial, in particular if the number of
substitution sites that can be dealt with in experiment is low.

4. DISCUSSION
In this study, for the first time, we performed a systematic large-
scale analysis of a complete experimental SSM library of a
biotechnologically highly relevant protein, BsLipA,52,53 with
respect to two types of protein stability. The library covers all
181 residues of BsLipA and results in 3439 variants, each with a
single AA substitution as confirmed by DNA sequencing.
Considering the screening results of the library toward
thermostability and detergent tolerance together is unique
compared to related studies2,4−8,17−19 and important in view of
the challenges of multidimensional property optimization of
modern biocatalysts.104−106 The measured T50 and D values
provide valuable reference data for future analyses because, in
contrast to other data sources,34−37 the different protein
stabilities were measured under respectively uniform conditions,
and there is no bias toward any particular substitution type or
site. Note, though, that other factors than protein stability may
influence T50 or D values measured here,52 including that
substitutions can directly impact BsLipA function, e.g., when
occurring in the vicinity of the active site.8 Moreover, the
measured T50 and D values may be influenced by thermody-
namic or kinetic factors.7,8 Therefore, in our analysis, we focused
on scrutinizing the impact of substitution sites on thermo-

stability or/and detergent tolerance to gain generally applicable
rules for data-driven protein engineering. The following results
stand out:
First, across the library, the likelihoods to find variants with

significantly increased T50 (∼12%) or D toward one detergent
(∼14%) are almost identical and small. The finding that the
overwhelming number of single AA substitutions introduced by
randommutagenesis causes a destabilizing effect is in agreement
with previous studies.33,107−110 This finding becomes even more
statistically relevant if multiple mutations need to be
accumulated over generations to reach a desired effect because
frequently a single, yet rather likely, destabilizing mutation is
sufficient to annihilate the effect of several stabilizing ones.20

The proportions of variants with increased T50 or D found here
are in line with the composition of databases such as
ProTherm30 but markedly larger than the success rate of ∼2%
used as a reference to evaluate the performance of FoldX.111

Hence, beyond the single T50 and D data, due to the
completeness of our library and the model character of our
protein, our results also constitute unbiased reference data as to
what efficiency can be expected for a protein system when
optimizing thermostability or detergent tolerance by random
mutagenesis. In turn, largest increases in T50 of 7.7 K and D of
2.4 found demonstrate that considerable improvements of
protein stability can already be achieved by single AA
substitutions. In that respect, previous studies on BsLipA
applying either directed evolution44 or rational design7,8 already
yielded close-to-optimal results in terms of increased thermo-
stability.
Second, in the context of data-driven protein engineering, we

identified substitution sites for which variants yield significantly
increased T50 or/and D. Not considering the magnitude of the
increase, only about one-third or below of all BsLipA residues
constitute such favorable substitution sites if T50 and D are
considered separately, demonstrating that the location of a
residue within a protein structure matters with respect to a
substitution effect. This result corroborates previous studies.5,7,8

In addition, our complete SSM library allowed us to reveal for
such substitution sites a significant and fair correlation between
the frequency of T50 or/and D-increasing substitutions and the
magnitude of the maximum effect. Together, these results show
that addressing all substitution sites in an unbiased manner by
random mutagenesis results in a considerable experimental
effort coupled to low efficiency. In turn, approaches that can
identify substitution sites with a high likelihood for significantly
increased T50 or D prior to doing experiments will be of great
value in protein engineering studies.
Third, notably, the conclusions from the last paragraph also

hold if more than one protein property is considered at a time.
As such, we showed that at 11 substitution sites a ∼4.6-fold
higher likelihood to find for each detergent variants with
significantly increased D compared to random mutagenesis is
found. Additionally, seven substitution sites yield a ∼3.4-fold
higher likelihood to find significantly increased T50 and a ∼4.7-
fold higher likelihood to find for each detergent variants with
significantly increasedD compared to randommutagenesis. The
latter finding suggests that approaches that can identify
substitution sites with a high likelihood for significantly
increased T50 should also be beneficial for identifying
substitution sites with a high likelihood for significantly
increased D, or vice versa. This is an important finding for
practical applications as many more algorithms have been
devised that address thermostability than detergent tolerance.

Table 2. CNA-Predicted Weak Spots of BsLipA

weak spot location at secondary structure elements phase transition

I12 turn T1
G13 turn T1
G46 toop T4
G52 αB T4
P53 αB T4
T66 αB T4
M134 bend T2
I135 bend T2
V136 bend T2
H152 bend T1
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Fourth, as another set of reference data, we defined hot spot
types together with the associated substitution sites to provide
benchmark data for evaluating the performance of data-driven
approaches. The first five classes follow the strict criterion that
only the six substitution sites with the respective highest
ΔT50;max or ΔDmax are considered, according to that all
combinations of the 20 proteinogenic AAs at such sites could
still be experimentally investigated.20,39,49,50 The intersections
comprising the substitution sites with the broadest impact on
ΔDmax, orΔT50; max and ΔDmax, are empty. Thus, we resorted to
defining two further classes with the somewhat relaxed criterion
that the comprised substitution sites show significantly
increased D toward each detergent, or significantly increased
T50 andD toward each detergent, regardless of the magnitude of
the single effect.
Fifth, we used the complete, unbiased, and uniformly

generated T50 and D data to probe if universal rules for
modulating thermostability or detergent tolerance can be
identified. We thereby focused on “one-dimensional” descrip-
tors in terms of location in secondary structure elements, degree
of burial, and physicochemical properties and conservation
degree of substituted AA. Such descriptors have been widely
analyzed before112,113 and play a role in data-driven consensus
approaches.114,115 Analyzing “two- or higher dimensional”
descriptors in terms of residue−residue interactions, entropic
contributions or other collective phenomena, or cross-
correlations of “one-dimensional” descriptors33 remains for
future work. Notably, considering our descriptors, many (up to
98 substitution sites) predicted hot spots result, which would
require considerable experimental efforts particularly if
beneficial substitutions need to be accumulated to reach a
desired effect. This finding demonstrates on a single protein
level that, with these descriptors, no universal and sufficiently
discriminating rule(s) can be identified, a finding that is
mirrored in studies across protein families116,117 and with
respect to low successes in assessing thermostabilities.112 Still, if
a higher number of predicted hot spots is acceptable, partially
solvent-exposed residues are good hot spot candidates. This
result differs from previous experimental studies showing that
especially surface remodeling emerged as an effective strategy to
improve protein stability.118,119 Furthermore, loop positions,
which have elsewhere been identified to preferentially carry
favorable substitution sites,120,121 show mostly destabilizing
effects. Finally, and likely surprisingly, hot spots were
preferentially found at nonconserved and semiconserved
position, a finding that may help refine future consensus
concepts where multiple sequence alignments are used to
substitute nonconsensus residues by consensus ones.42,122

Sixth, we made use of the reference data to unequivocally
benchmark our ensemble- and rigidity theory-based CNA
approach with respect to predicting hot spots as structural weak
spots of the protein. In contrast to previous studies on much
smaller data sets,2,4,5,8 the present work allows to systematically
assess the quality of our predictions. To do so, and in contrast to
other assessments of protein stability predictors,29,30 we apply
recall and precision as basic statistical measures, rather than
sensitivity and specificity, because we are interested in the
accuracy of predicting hot spots and not not-hot spots, the latter
of which furthermore clearly dominate the data set in terms of
occurrence frequency. Methodologically, CNA differs from
other state-of-the art methods that do not consider ensemble
representations of the protein.113,123−127 Furthermore, CNA
does not require system-specific weighting or fitting parame-

ters.113,125,128,129 This should make the results obtained here
with CNA transferable to other protein systems. Weak spot
prediction by CNA relies on a realistic modeling of the thermal
unfolding of a protein.66−68 The predicted major phase
transitions and the order of the segregating secondary structure
elements are in agreement with previous computational studies
and experimental observations on other proteins with an α/β
hydrolase fold.130,131 Furthermore, we confirmed the unfolding
pathway of wtBsLipA predicted by CNA with the independent
MCMC-based ProFASi approach. From a practical point of
view, it is relevant that CNA predicted only 10 weak spots,
allowing to focus subsequent substitution efforts on only∼6% of
the protein residues. Furthermore, the gain in precision over
random classification is between ∼3 and ∼9, depending on the
hot spot class. Considering the properties of the majority of
predicted weak spots, i.e., a location in a loop, turn, or bend and a
neutral or aliphatic amino acid type (Table 2), the notion may
arise that these two properties, when correlated, characterize hot
spots. The gain in precision over random classification is only
between ∼0.7 and ∼2.1, however, depending on the hot spot
class (Table S16), and, hence, more than fourfold lower than
when hot spots are predicted as weak spots by CNA (Table 1).
Together with the low computational demand on the order of
hours only, these results lead to the strong recommendation to
apply CNA-based weak spot prediction for data-driven protein
engineering toward increased T50 or/and D.
In summary, we provide systematic and unbiased reference

data at large scale for thermostability measured as T50 values and
detergent tolerance measured as D for a biotechnologically
important protein, identified consistently defined hot spot types
for evaluating the performance of data-driven protein-engineer-
ing approaches, and showed that CNA-based hot spot
prediction can yield a gain in precision over random
classification up to ninefold.
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JUWELS at Jülich Supercomputing Centre (JSC) (user IDs:
HKF7; protil (project ID: 15956)).132,133

■ REFERENCES
(1) Salazar, O.; Cirino, P. C.; Arnold, F. H. Thermostabilization of a
cytochrome P450 peroxygenase. ChemBioChem 2003, 4, 891−893.
(2) Radestock, S.; Gohlke, H. Exploiting the link between protein
rigidity and thermostability for data-driven protein engineering. Eng.
Life Sci. 2008, 8, 507−522.
(3) Rader, A. Thermostability in rubredoxin and its relationship to
mechanical rigidity. Phys. Biol. 2010, 7, 016002.
(4) Radestock, S.; Gohlke, H. Protein rigidity and thermophilic
adaptation. Proteins: Struct., Funct., Genet. 2011, 79, 1089−1108.
(5) Rathi, P. C.; Radestock, S.; Gohlke, H. Thermostabilizing
mutations preferentially occur at structural weak spots with a high
mutation ratio. J. Biotechnol. 2012, 159, 135−144.
(6) Dick, M.; Weiergrab̈er, O. H.; Classen, T.; Bisterfeld, C.; Bramski,
J.; Gohlke, H.; Pietruszka, J. Trading off stability against activity in
extremophilic aldolases. Sci. Rep. 2016, 6, 17908.
(7) Rathi, P. C.; Jaeger, K.-E.; Gohlke, H. Structural rigidity and
protein thermostability in variants of lipase A from Bacillus subtilis.
PLoS One 2015, 10, No. e0130289.
(8) Rathi, P. C.; Fulton, A.; Jaeger, K.-E.; Gohlke, H. Application of
rigidity theory to the thermostabilization of lipase A from Bacillus
subtilis. PLoS Comput. Biol. 2016, 12, No. e1004754.
(9) Pottkam̈per, J.; Barthen, P.; Ilmberger, N.; Schwaneberg, U.;
Schenk, A.; Schulte, M.; Ignatiev, N.; Streit, W. R. Applying
metagenomics for the identification of bacterial cellulases that are
stable in ionic liquids. Green Chem. 2009, 11, 957−965.

(10) Liu, H.; Zhu, L.; Bocola, M.; Chen, N.; Spiess, A. C.;
Schwaneberg, U. Directed laccase evolution for improved ionic liquid
resistance. Green Chem. 2013, 15, 1348−1355.
(11) Carter, J. L.; Bekhouche, M.; Noiriel, A.; Blum, L. J.; Doumec̀he,
B. Directed evolution of a formate dehydrogenase for increased
tolerance to ionic liquids reveals a new site for increasing the stability.
ChemBioChem 2014, 15, 2710−2718.
(12) Chen, Z.; Pereira, J. H.; Liu, H.; Tran, H. M.; Hsu, N. S.; Dibble,
D.; Singh, S.; Adams, P. D.; Sapra, R.; Hadi, M. Z.; Simmons, B. A.; Sale,
K. L. Improved activity of a thermophilic cellulase, Cel5A, from
Thermotoga maritima on ionic liquid pretreated switchgrass. PLoS One
2013, 8, No. e79725.
(13) Lehmann, C.; Bocola, M.; Streit, W. R.; Martinez, R.;
Schwaneberg, U. Ionic liquid and deep eutectic solvent-activated
CelA2 variants generated by directed evolution. Appl. Microbiol.
Biotechnol. 2014, 98, 5775−5785.
(14) Nordwald, E. M.; Armstrong, G. S.; Kaar, J. L. NMR-guided
rational engineering of an ionic-liquid-tolerant lipase. ACS Catal. 2014,
4, 4057−4064.
(15) Frauenkron-Machedjou, V. J.; Fulton, A.; Zhu, L.; Anker, C.;
Bocola, M.; Jaeger, K. E.; Schwaneberg, U. Towards understanding
directed evolution: more than half of all amino acid positions contribute
to ionic liquid resistance of Bacillus subtilis lipase A. ChemBioChem
2015, 16, 937−945.
(16) Zhao, J.; Frauenkron-Machedjou, V. J.; Fulton, A.; Zhu, L.;
Davari, M. D.; Jaeger, K.-E.; Schwaneberg, U.; Bocola, M. Unraveling
the effects of amino acid substitutions enhancing lipase resistance to an
ionic liquid: a molecular dynamics study. Phys. Chem. Chem. Phys. 2018,
20, 9600−9609.
(17) Brissos, V.; Eggert, T.; Cabral, J.; Jaeger, K.-E. Improving activity
and stability of cutinase towards the anionic detergent AOT by
complete saturation mutagenesis. Protein Eng., Des. Sel. 2008, 21, 387−
393.
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