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ABSTRACT: Knowledge of protein structures is essential to understand proteins’ DNN Consensus
functions, evolution, dynamics, stabilities, and interactions and for data-driven protein- or ~

drug design. Yet, experimental structure determination rates are far exceeded by that of L N
next-generation sequencing, resulting in less than 1/1000th of proteins having an = j}g&‘/ &7
experimentally known 3D structure. Computational structure prediction seeks to alleviate MSA™ .
this problem, and the Critical Assessment of Protein Structure Prediction (CASP) has
shown the value of consensus and meta-methods that utilize complementary algorithms.
However, traditionally, such methods employ majority voting during template selection and model averaging during refinement,
which can drive the model away from the native fold if it is underrepresented in the ensemble. Here, we present TopModel, a fully
automated meta-method for protein structure prediction. In contrast to traditional consensus and meta-methods, TopModel uses
top-down consensus and deep neural networks to select templates and identify and correct wrongly modeled regions. TopModel
combines a broad range of state-of-the-art methods for threading, alignment, and model quality estimation and provides a versatile
workflow and toolbox for template-based structure prediction. TopModel shows a superior template selection, alignment accuracy,
and model quality for template-based structure prediction on the CASP10—12 datasets compared to 12 state-of-the-art stand-alone
primary predictors. TopModel was validated by prospective predictions of the nisin resistance protein (NSR) protein from
Streptococcus agalactiae and LipoP from Clostridium difficile, showing far better agreement with experimental data than any of its
constituent primary predictors. These results, in general, demonstrate the utility of TopModel for protein structure prediction and, in
particular, show how combining computational structure prediction with sparse or low-resolution experimental data can improve the
final model.
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B INTRODUCTION The field of computational structure prediction has driven

Knowing the 3D structure of a protein is important to many advances in structural bioinformatics, the most
understand its stability,' dynamics, function,” structural important being the development of threading algorithms

) . . A, 4,5 .6 that seek to identify a template structure most similar to the
evolution,” and interactions with ligands™” or other proteins. ; )
native structure of a target sequence of interest. These

Consequently, protein structure prediction is an essential part ) - X

of knowledge-based protein engineering7 drug design and developments include fast and sensitive alignment methods
) . 12 " . .

-discovery,” and function assignment.”'’ At present, X-ray sucth. as glelrfted search metﬁthdsa’l . POSItltolr;'SPeCIﬁﬁlc _Scor}irig
crystallography and nuclear magnetic resonance (NMR) matrices, sequence protie aghment,  profue—proie
- - alignment,'®'” and hidden Markov models.'®™>* The accurac
spectroscopy are the dominating experimental methods for fgh d’) loorithms has been furth > 1 by addi Y
structure determination, but both are too time-consuming to ot threading algorithms has been ! rther improved by adding
keep up with current high-throughput genome sequencing strl}ctural features such as pr'ec_h.cte% sec.ondary structure,
information. Computational structure prediction has sought to residue contacts, solvent azcscess1b1hty, residue depth,” and
backbone dihedral angles™ to the alignment and scoring

alleviate this problem, and in the last decades, many X - e e
approaches have been developed, raising the question of functions. Additionally, probabilistic modehng,28 depth-
dependent alignment of structure fragments, mult‘gle
23

which method to use for a given sequence of interest. The k 5o i /
biological information that can be derived from a structure template and structure alignment,™ normalized Z-scores,

prediction depends on its accuracy: high-confidence models
based on homologous templates are generally suitable for Received: August 15, 2019
computational ligand docking and virtual compound screening, Published: January 22, 2020
while models with medium confidence can be useful for the

identification of functionally important sites and disease-

associated mutations."'

© 2020 American Chemical Society https://dx.doi.org/10.1021/acs.jctc.9b00825

W ACS Publications 1953 J. Chem. Theory Comput. 2020, 16, 1953—1967


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Mulnaes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicola+Porta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rebecca+Clemens"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Irina+Apanasenko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jens+Reiners"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lothar+Gremer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philipp+Neudecker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philipp+Neudecker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sander+H.+J.+Smits"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Holger+Gohlke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.9b00825&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?fig=abs1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00825?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf

Journal of Chemical Theory and Computation

and sequence-based solvation potentials'” have been employed
to increase performance. Advances in multiple structure/
sequence alignment methods, model building, clustering, and
quality estimation have also had a large impact in the field.*>*"
Meta-approaches have proven to be one of the major
advances,” as evident by the consistent high ranking of the
Zhang meta-server’> in the blind Critical Assessment of
Protein Structure Prediction (CASP) experiments. The meta-
server methodology is to produce structure predictions using
information from multiple different algorithms®>** and either
rerank or combine their output to produce better predictions
than any of their component predictors. Considering the
diversity of optimization procedures, training sets and quality
measures, it is not surprising that meta-methods provide more
robust results with a higher overall quality.

Here, we present a meta-approach to template-based
structure prediction, which uses a top-down consensus
approach rather than traditional majority-voting consensus
termed TopModel. The development of TopModel was
inspired by the success of meta-approaches in CASP
experiments.”> The CASP experiments, however, are under-
taken on a working group rather than an algorithmic level, and
competing groups use different algorithms not only for
threading but also for alignment, model construction, model
refinement, model evaluation, and model selection. It is
therefore difficult to assign the differences in model quality
from different groups to improvement of a specific step of the
structure prediction workflow.

The aim of TopModel is therefore to individually optimize
four steps of the structure prediction pipeline: template
selection, target—template(s) alignment, model selection, and
model combination and refinement. By focusing on each step
individually, we aim to improve the final quality of models
produced by TopModel. TopModel aims to provide a versatile
and accurate toolbox for template-based protein structure
prediction, expand the applicability of existing algorithms for
threading, alignment, model quality estimation, and refinement
via an automated integration of all methods, and yield high-
quality structure predictions even for low sequence identities
that are in agreement with experimental data.

Ab initio folding methods have in recent years seen a large
increase in model accuracy because of a revolution in using
image recognition deep neural networks (DNNs) for
predicting residue—residue contacts and distances.’® The aim
of TopModel, however, is to establish an automated workflow
for template-based modeling (TBM) in order to explore how
deep learning can improve template selection and how well the
use of structural information from multiple templates and
alternate alignments can improve model quality compared to
single-template models. In parallel to the development of
TopModel, we are working on an ab initio folding pipeline that
builds on the recent advances in prediction of residue—residue
distances, which we aim to combine with the template-based
folding in TopModel for improved performance.

B METHODS AND IMPLEMENTATION

TopModel. TopModel is a protein structure prediction
workflow with five modules that are executed consecutively or
can be used individually. A simplified depiction of the
interaction between the different TopModel modules can be
seen in Figure 1; a detailed description of each module is given
below.
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Figure 1. Simplified interaction between TopModel modules. The
target sequence is given as an input to TopThreader (1), which
searches for templates using different primary threaders. TopThreader
uses TopBuilder (2) to build models from the primary threader
alignments, template structures, and target sequence, which are scored
with TopScore (3) and used by TopThreader (4) together with
primary threader scores to rank and cluster templates and remove
false positives. TopThreader then uses TopAligner (5) to align
templates and construct consensus alignments, which are built with
TopBuilder (6), scored with TopScore (3), and used together with
primary threader scores in TopThreader (4) to rank templates by
predicted similarity to the native structure. After template selection,
TopAligner (S) is used to generate a large ensemble of pairwise and
multitemplate alignments from which models are built with
TopBuilder (6) and scored with TopScore (3). Models are selected
from the multitemplate ensemble (7) and the single-template models
(8) by TopRefiner, which combines and refines the models to
produce a final model (9).

1. TopThreader. TopThreader identifies template struc-
tures from a target sequence based on predictions from
12 different primary threading programs using a top-
down consensus approach instead of traditional majority
voting.

. TopAligner. TopAligner makes an ensemble of align-
ments between the target sequence and the provided
templates based on template—template alignments from
eight different primary alignment programs and
template—target alignments from TopThreader.

. TopBuilder. TopBuilder makes models of the target
sequence based on alignments from TopAligner or
TopThreader and templates from TopThreader using
Modeller9®” and Rosetta.”

. TopScore. TopScore and TopScoreSingle® predict the
global and local error of models based on predictions
from 15 primary model quality assessment programs.
TopScoreSingle is similar to TopScore but does not
include clustering information and is therefore suitable
when the best model is not part of a cluster.

S. TopRefiner. TopRefiner selects, combines, and refines

models made by TopBuilder based on predicted global
and local errors from TopScore and TopScoreSingle.

TopThreader. The threading process is the first and most
critical step of template-based protein structure prediction.” It
has three main goals: (1) identification of correct template
structures for a target sequence, also known as fold recognition
or threading, (2) target—template alignment, and (3) ranking
of templates according to their similarity to the native
structure. The TopModel threading module TopThreader
uses a combination of DNNs, model quality prediction by
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TopScore and TopScoreSingle,” and sequence/structure
alignments to predict the TM-Score™ between each template
and the native structure, remove false-positive templates,
calculate consensus alignments, and rank templates by their
predicted TM-Score. The TM-Score is a robust measure of
structural similarity between two proteins, which is independ-
ent of the protein sizes.

Prediction of template quality is similar to protein model
quality assessment but not identical. First, template similarity
to the native structure differs from model quality because of
different possible target—template alignments, which is one of
the main determinants of template-based model quality. In
other words, a template may be similar to the native structure,
but if the target—template alignment is wrong, the resulting
model can have a low quality. Consequently, while a template
has just one TM-Score to the native structure, models built
from different alignments between the target and the template
may have different model qualities, which can obscure the
detection of the best template. Second, template similarity to
the native structure is based on comparison between structures
with different sequences and sizes, while model quality is based
on comparison between structures of the same size and
sequence as the native structure. Thus, while a small partially
matching template may have the right fold for a given part of
the target sequence, a model based on such a template alone
could have a poor quality because of low coverage. These
differences are important, especially for hard cases, in which
threaders may prefer a wrong template with a large coverage
over a short template with a correct fold but poor coverage. As
such, the prediction of template similarity to the native
structure is a challenging task.

TopThreader has eight steps outlined here. In the
Supporting Information, a detailed description of the Top-
Threader workflow (Text T1 and Figure S1), the DNN
training (Text T1, Figure S2, and Table S2), and the primary
threading programs (Text T2 and Table S4) can be found.

1. Primary Threaders. TopThreader uses 20 primary
threading algorithms from 12 primary threaders and
selects the top S templates from each threader (Table
S1). All threaders are run with default settings following
the provided instructions by their respective authors.

. Prefiltering. Prefiltering allows the user to discard
templates according to cutoffs with respect to, for
example, sequence identity, coverage, experimental
method, or submission date. By default, templates with
less than 30% coverage and artificially designed proteins
are removed.

. Alignment Fitting. TopThreader fits all pairwise
threading alignments to the template structures and
target sequence to ensure that residues match exactly.

. Score templates using DNNs. TopThreader initially
predicts a target—template TM-Score (Initial Score)
using DNNs. DNNs’ input features include primary
threader scores and values calculated from threading
alignments such as sequence identity and target
coverage.

5. Redundancy clustering. TopThreader clusters templates
at 90% sequence identity and pairwise TM-Score of 0.9,
selecting the cluster centroid with the highest Initial
Score. Alignments from other threaders/templates in the
cluster are transferred to the centroid by superimposing
their target—template alignments to the (nearly
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identical) centroid while minimizing changes to the
alignment.

. False positive removal. Removal of false positives is
critical to ensure correct fold recognition. TopThreader
first clusters templates structurally to remove bias toward
folds with many templates. For each cluster, DNNs are
used to predict the centroid TM-Score (Filtering Score).
Templates are then structurally aligned to the best
centroid based on Filtering Score and TopScoreSingle of
a model built from the template. Using a top-down
consensus approach, models are discarded if they are
dissimilar (TM-Score < 0.4) to the best centroid.

. Consensus. TopThreader uses local and global quality
scores of models from different pairwise threading
alignments combined with a structural alignment of all
templates to calculate consensus alignments for each
template.

. Ranking. The final template ranking is based on the
predicted TM-Score from a DNN with input features
from all previous steps. This score, the TopThreader
Score, has a Pearson’s R* of 0.77 with the true TM-Score
of the template.

A key difference between TopThreader and consensus
methods such as the MULTICOM™' or Zhang servers'” is that
consensus in TopThreader is calculated based on DNN-
predicted template similarity (TM-Score) to the native
structure and top-down structural comparison to the highest
scoring template. This contrasts with traditional consensus
approaches similar to those mentioned above, in which the
frequency with which a fold is identified is the driving factor of
the consensus decision. TopThreader therefore has the
advantage that even if the majority of identified templates or
alignments are wrong, it can find true templates and good
alignments if the highest scoring template is correct. This
selection scheme is a key advantage in cases where correlated
threading results produce a bias toward the same false-positive
templates or wrong alignments, as seen for the CASP target
T0742 as well as for prospective modeling of the nisin
resistance protein (NSR) from Streptococcus agalactiae
(SaNSR; see the Experimental Validation section). An
analogous situation is found in protein model quality
assessment, in which clustering methods (which determine
the quality based on consensus between models) perform
worse at selecting the best model; if this model does not
belong to a cluster, a task single-model and quasi-single-model
methods handle better.*’ In turn, the top-down approach is at
a disadvantage if the highest scoring template does not have
the correct fold, in which case a potentially correct fold could
be discarded when being compared to the highest scoring
template.

TopAligner. The use of information from multiple
templates can improve model quality by increasing total target
coverage or improving pairwise alignments between templates
and the target by matching structural elements of different
templates.”® This improvement depends heavily on the quality
of the templates and their similarity to each other, however. If
the quality difference between the best template and other
identified templates is large, including sub-par information
from bad templates may decrease model quality or distort
multiple alignments. Therefore, the TopAligner module
calculates an ensemble of pairwise and multiple alignments
using every possible combination of the top five compatible
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(pairwise TM-Score > 0.5) templates. TopAligner uses eight
different state-of-the-art programs for template—template
alignment (Table S1) and all primary threader and consensus
alignments from TopThreader for template—target alignment.
Each pairwise template—target alignment is weighted both
globally and locally according to the weights calculated by
TopThreader from model quality assessment with TopScore,
residue-wise IDDT to the best scoring pairwise-alignment
model, and residue-wise sequence similarity between the target
and template. A detailed description of TopAligner and its
primary alignment programs can be found in the Supporting
Information Texts T3 and T4.

TopBuilder. All alignments from TopAligner are modeled
using the TopBuilder module, which is also used at the initial
modeling stages of TopThreader. TopBuilder uses Modeller9*”
and the partial thread function of Rosetta® to construct
models based on alignments and template structures. It
includes algorithms for knot detection and elimination,
multiple types of loop refinement selected automatically
based on loop size, and four methods for model refine-
ment.**™*" A detailed description of TopBuilder can be found
in the Supporting Information Text TS. By default, model
refinement is done by side-chain repacking with RASP.*

TopScore. The ensemble of models generated by Top-
Builder is evaluated using TopScore and TopScoreSingle.””
Because TopAligner produces more alignments based on
multiple templates, model selection with TopScore is, due to
the use of clustering information, biased toward selecting a
multitemplate model. As mentioned (see the TopAligner
section), this bias can in some cases lead to worse models
because of inclusion of information from worse templates.
Therefore, it is key to consider both TopScore and
TopScoreSingle when selecting models for refinement and
model combination (see the TopRefiner section).

TopRefiner. Previous work®**"** has shown that combin-
ing different templates or models can improve the accuracy of
the final model. Previous work has focused on combining
pairwise alignments,Arl extracting consensus restraints from
templates,”” or averaging models.”” The TopRefiner module
refines models using model quality assessment, model
fragmenting, fragment recombination, template/model hybrid-
ization, and fragment-guided MD refinement in order to
remove regions with predicted errors and combine good
fragments into full-length models. Models are first selected
from the TopAligner (top-ranked model for each template
combination) and TopThreader (top five primary threader
models and top five consensus models according to TopScore
and TopScoreSingle) model ensembles. From these models,
regions predicted to contain errors by TopScore or Top-
ScoreSingle are removed, and the resulting fragments are
recombined into improved models. After fragment recombi-
nation, the models are used to construct new structural
alignments to all identified templates, from which hybrid
models are built using Rosetta.*® Finally, the best models from
each of the previous steps of the refinement are selected and
refined with Modrefiner,” followed by a second round of
model fragmenting and recombination. The final model is
selected as the highest ranked model in the largest cluster
according to TopScore. A detailed description of TopRefiner
can be found in the Supporting Information Text T6 and
Figure S3.

1956

B DATASETS

Screening. To train the DNNs of TopThreader on a set of
diverse structures and difficulties (with respect to low sequence
identity), a screening protocol is used, in which a set of known
structures are repredicted while removing templates with a
sequence identity above a given cutoff. The sequence identity
cutoffs were chosen as 90, 60, and 30%, respectively, to
simulate trivial, easy, and difficult modeling situations. A
detailed description of the screening can be found in the
Supporting Information.

CASP Dataset. To evaluate how TopModel performs when
compared to other automated methods in the field, the
conditions of the CASP10, CASP11, and CASP12 experiments
were approximated. By turning on the PDB submission date
filter in TopThreader, templates submitted on the day of or
after the submission of a CASP target are removed, a
procedure similar in nature to the CAMEQ experiments.”’ A
CASP target was kept if it fulfills three criteria: (1) the target
native structure must be submitted to the PDB while writing
this article, allowing for comparison between the model and
native structure, (2) the target must not have been canceled
during the CASP competition by the organizers, and (3) the
sequence identity between the sequence released for prediction
and the resolved native structure must be at least 50%.
Applying these filtering criteria leaves 140 template-based
targets and 46 free modeling targets (Table S3). It is important
to note that this approximation will not yield the exact same
results as if TopModel was run at the time of each CASP
competition. Because threader and sequence databases have
been updated since the respective competitions, quality scores
(such as e-values and Z-scores) calculated by primary
threaders, as well as primary feature predictions (such as
secondary structure), will differ from what they would have
been at the time of the competition. This can lead to hits that
would have been identified with scores above significance
cutoffs at the time of CASP competition but now have scores
below the cutoffs for the updated databases. This effect is
compounded by database clustering, in particular, for threaders
that only return a fixed number of hits, of which a significant
portion may be released too recently and thus removed by the
filter. However, despite these approximations, it can serve as a
useful indicator of structure prediction performance. None of
the CASP targets were considered for the training of the
TopThreader DNNs. This dataset will be referred to as the
CASP dataset and is used as external evaluation of TopModel
performance.

Experimental Validation. To evaluate the performance of
TopModel on two de novo cases, we modeled the SaNSR
protein from the nisin operon of S. agalactiae (Uniprot ID
AOA140UHB6)"" before its release to the PDB and the LipoP
from Clostridium difficile (Uniprot ID QI8BL3). These
structures were then experimentally validated by crystalliza-
tion”' or by agreement with small-angle X-ray scattering
(SAXS) and NMR data (see Experimental Validation).

B RESULTS AND DISCUSSION

Evaluation of TopThreader. The aim of template
selection with TopThreader is to retrieve a set of templates
ranked according to their similarity (according to TM-Score)
to the native structure. To evaluate how well this goal is
achieved, we calculate the following: for each target in the
CASP dataset (Table S3), the highest TM-Score between the
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native structure and any template identified in the top five
templates of any primary threader is calculated to find the best
obtainable TM-Score given the primary threader results if
template selection by TM-Score is perfect. Then, for
TopThreader and each primary threader, the highest TM
score of the top five ranked templates is compared to this best
obtainable score. From this comparison, we calculate ATM,,
= 100-(max[TM,, templates] - ma-X[TMtops templates])' Based on
this ATM,y, score for a given target, we define three
categories: (I) the best template is found (ATM,q4 < $),
(II) an adequate template is found (ATM,o [S—15]), and
(1I1) no adequate template is found (ATM, o, > 15). We count
the frequency of each category for each primary threader and
for TopThreader for three subsets of the CASP dataset: (1)
cases assigned by CASP organizers as TBM targets, (2) cases
assigned as free modeling (FM) targets, and (3) all (TBM +
FM) targets. The results are presented in Figure 2 (see Table
S5 for numerical values).

The Ghent implementation of the Freeman—Halton exact
test for 3 X 3 contingency tables®” was used to determine the
significance between the categorization of TopThreader and
each primary threader in terms of three categories (I, II, and
I11) described above (see Table S6 for summarized normalized
tables). Accordingly, all differences are highly significant (p <
0.01) for all cases showing a large and significant benefit to
selecting templates with TopThreader over any of the tested
stand-alone primary threaders.

The results in Figure 2 show that for the CASP subsets [(A)
TBM, (B) FM, (C) TBM + FM], TopThreader identifies the
best template (category L, blue) as one of the top five templates
in 92, 56, and 83% of the cases, respectively. Furthermore, an
adequate template (category II, yellow) is found in 4, 24, and
9% of the cases. An (at least) adequate template (according to
TM-Score) is not identified in only 4, 20, and 8% of the cases
(category 111, red). It also becomes clear that for FM targets, it
is more difficult to select the template with the best TM-Score
(Figure 2B) because all primary threaders and TopThreader
fail to identify the best template for ~20% of targets. It is
important to note, however, that for FM targets, most TM-
Scores are close to or below 0.4 even for the best template and
as such poorly reflect structural similarity in the first place, as
two random structures will have a TM-Score of 0.17 when
aligned.”

In addition to evaluating absolute performance for all top
five templates, we evaluated the difference in template TM-
Score of each of the top five ranked templates by normalizing
the TM-Score of a template with a given rank to the template
with that rank if the templates had been ranked according to
true (rather than predicted) TM-Score. These normalized
scores were then averaged, resulting in values closer to 1
corresponding to a ranking similar on average to a perfect
ranking by true TM-Score rather than predicted TM-Score.
The full results can be found in Table S7 and show that, in
terms of ranking, TopThreader has a significantly better
performance compared to the best primary threaders for TBM
targets, with an average increase of 2% across all top five
template ranks. For FM targets, a large improvement is seen
for the top-ranked model (7%) and lower performance than
primary threaders for subsequent ranks. This is surprising
considering that templates for FM targets are close to or below
the 0.4 TM-Score limit used by TopThreader to distinguish
true from false templates, and because of CASP organizers,
these targets should have no templates available. This suggests
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Figure 2. Template enrichment by TopThreader compared to
primary threaders. Comparison of template selection performance
on the CASP dataset. Performance is evaluated based on the ATM,,
score, which evaluates the difference between the best of the top five
ranked templates of a given threader and the best template found by
any threader. For each target, three categories are selected: (I) the
best template is found (ATM;y, < S), (II) an adequate template is
found (ATM,q, [5—15]), and (III) no adequate template is found
(ATM,qy > 15). The values represent percentages of targets in the
CASP dataset for TBM (A), FM (B), and all (C) targets. Differences
between TopThreader and the best primary threader for each subset
are highly significant (p < 0.01) according to the Ghent
implementation of the Freeman—Halton exact test for 3 X 3
contingency tables.”> For numerical values, see Tables S5 and S6.

that even for extremely remote structural similarities, Top-
Threader is able to distinguish between low-quality templates
and a random match to some degree, as is also shown in Figure
2B. The lower ranking performance for FM targets for ranks
other than the top-ranked template is an effect of TopThreader
requiring structural consensus between selected templates.
Primary threaders do not require consensus and can therefore
rank multiple incompatible folds highly. This gives a higher
chance that one of the lower ranked templates is the best, while
TopModel only finds the best template if it is either ranked at
the top or is structurally similar to the top-ranked template.
Evaluation of TopAligner. To evaluate the effect of using
TopAligner to sample alignments with different template
combinations and alignment programs, we compared models
built from primary threading alignments (TopThreader step 7)
with models from TopRefiner stage 1, which are selected from
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the TopAligner and TopThreader ensembles but without
modifying the models themselves. Model quality is evaluated in
terms of GDT_TS score,”” which is used in CASP to evaluate
model quality by comparing a model to the native structure
and evaluates intermodel C, atom distance conservation given
different distance thresholds. We calculated the change in
GDT_TS score between the two alignment ensembles.
However, as we are interested in the relative change in
model quality, we calculate the percentage-wise difference
denoted as AGDT_TS. All models are built with TopBuilder
and selected either with TopScoreSingle or according to the
true GDT_TS score, and thus, only the alignment ensemble
used to generate the models differ. There is no bias from the
composition or size of the model ensemble because neither
TopScoreSingle nor the true GDT_TS score depends on
composition or size of the model ensemble. This allows us to
compare the use of an ensemble of multitemplate and single-
template alignments to the use of an ensemble of only single-
template threading alignments. The results are shown in Figure
3A.

These findings indicate that sampling different alignments
and combinations of templates using TopAligner in the
majority of cases (56 and 82% of TBM and FM targets,
respectively, if selected with TopScoreSingle) leads to little
change in GDT_TS score. This result is expected, as for most
targets, the different templates cover similar residues or are so
similar that model quality is comparable. Furthermore, FM
targets rarely have many similar templates identified by
TopThreader because TopThreader requires all identified
templates to have the same fold as the top-ranked template,
which is rarely the case for FM targets. For TBM targets, using
multiple templates leads to a decrease in GDT_TS score in 9
and 5% of cases if selected by TopScoreSingle or by best
GDT_TS, respectively. This indicates that in a small number
of cases, model quality decreases by using multiple templates,
usually because of introduction of alignment errors when
aligning poor templates with good ones. More importantly,
however, for 22% of TBM targets, the GDT_TS score
improves by 5—20%, and for 9% of targets, it improves by
>20%. This shows an over 3 times higher chance that using
TopAligner to sample different multitemplate alignments will
increase model quality. These findings are in line with previous
work, showing that using multiple templates and sampling
alternate alignments can improve model accuracy.”’

Evaluation of TopRefiner. TopRefiner has three aims:
(1) selection of a small ensemble of good models built by
TopThreader and TopAligner to be used for model
combination and refinement, (2) combination of selected
models to generate an ensemble of models converging on the
correct fold, and (3) selecting the best possible model as the
final TopModel prediction.

To evaluate the achievement of the first goal, we calculate
AGDT_TS between the best model from the stage 1 ensemble
and the best model achieved at any previous step of the
TopModel workflow from any alignment of any template. We
find that in just 6% of TBM targets, this distance is more than
S GDT_TS units (26% for FM targets). The cases in which
this distance is large are primarily those in which template
selection with TopThreader fails to select the best template.
This confirms that the models selected for refinement and
model combination represent good models compared to those
generated at earlier steps in the pipeline.

1958

pubs.acs.org/JCTC
*
A40 ok ook » B 1>20%
:j I 1 [5-20%]
30 8 O | [5-20%)]
S < B | >20%
"% 20 * p<0.05
ko *%x p<0.01
)] %% p < 0.001
E 10 *xxxp < 0.0001
- H
N = W =W -
TopScoreSingle  GDT_TS  TopScoreSingle GDT_TS
TBM FM
*%
B40 Fkkk *k *
30
§
n 20
@
910
'(_“ H
= . m FIES .
TopScore GDT_TS TopScore GDT_TS
TBM FM

Figure 3. Impact of using TopAligner and TopRefiner on model
quality. The relative change in GDT_TS score (AGDT_TS) is
calculated by comparing a model selected before and after running
TopAligner (A) or TopRefiner (B), respectively. (A) Difference in
model quality when selected from a multi-/single-template model
ensemble from TopAligner/TopThreader compared to selection from
a single-template pairwise primary threader model ensemble. (B)
Difference in model quality when selected from the first stage of
TopRefiner (before refinement) compared to selection from the last
stage of TopRefiner (after refinement). The models are selected either
by true GDT_TS or by TopScoreSingle (A) or TopScore (B). Five
categories are defined based on AGDT_TS: no change (AGDT_TS
< 5%), small increase/decrease (AGDT_TS 1/| [5—20%]; green/
yellow), and large increase/decrease (AGDT_TS 1/1 > 20%; blue/
red). The “no change” category is the most abundant and is not
shown as it reflects no significant change in model quality.
Significance is calculated using a one-tailed t-test between
corresponding increase/decrease categories (blue-red and green-
yellow, respectively). The null hypothesis is that the probability of
model quality increase of a given amount (5—20 or >20%
AGDT _TS) is the same as the probability of quality decrease by
the same amount. Pairwise comparisons where this hypothesis can be
rejected are indicated with brackets and corresponding p-values (*: p
< 0.0, **: p < 0.01, #%: p < 0,001, and ****; p < 0.0001). The
number of samples used is the number of CASP targets in the TBM
(140) and FM (46) categories.

To see how well the second goal is achieved, the models
from TopRefiner stage 1, which are not refined but simply
selected from the TopThreader/TopAligner model ensembles,
are compared with models from TopRefiner stage 4, which is
after refinement. If TopRefiner is successful, significantly more
targets should see an increase in GDT_TS compared to those
with a decrease. The result of this comparison is shown in
Figure 3B and demonstrates that in 42% of TBM targets (92%
for FM targets) AGDT_TS is <5%, indicating that in these
cases, no significant change in GDT_TS score is observed,
either because the starting models are too far from the true fold
to be refined (most FM targets) or because the starting models
are so close to the true structure that no improvement is seen
(most TBM targets). However, for TBM targets, we find that
there is a significant advantage of refinement, with over 2 times
as many systems showing an increase in GDT_TS rather than
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Figure 4. GDT_TS comparisons between TopModel and CASP servers. The bars represent comparison between TopModel and one of the four
established CASP servers [the Zhang server (red), the Baker Server (yellow), the HHPred server (green), and the Zhou server (blue)] as well as
the average of the top 200 server submissions for each target (gray). The Zhang server and Baker server both make use of ab initio folding and
domain parsing, putting them at an advantage over TopModel. (A) AGDT_TS,,, for CASP TBM targets indicates for how many of CASP TBM
targets TopModel shows similar, worse, or better model quality than other established servers. (B) AGDT_TS,,, for CASP FM targets indicates for
how many of CASP FM targets TopModel shows similar, worse, or better model quality than other established servers. (C) AAGDT_TS,,, for
multidomain TBM CASP targets shows the change in the number of targets for which TopModel performs worse, similar, or better than
established servers, if domain parsing, domain-wise modeling, and domain recombination were used. A large shift from worse/similar model
qualities to better model qualities is seen. (D) AAGDT_TS,, for multidomain FM CASP targets shows the change in the number of targets for
which TopModel performs worse, similar, or better than established servers, if domain parsing, domain-wise modeling, and domain recombination
were used. A large shift from worse/similar model qualities to better model qualities is seen.

a decrease. It is interesting to see that model selection with As of now, TopModel has no domain parsing module to cut
TopScore shows a larger improvement than according to true the input sequence into domains before modeling. Therefore,
GDT_TS. This shows that part of the benefit of refinement is in the cases where multiple domains have good templates but
an improved ability to select the best model, and not only an no template covers the whole sequence, TopModel will match
improvement of the models themselves, indicating that for the best (often largest) domain template, leaving the other
many targets convergence to the native fold is a key part of domains without a template. Therefore, TopModel is at a
refinement. disadvantage for large multidomain targets for which no
Comparison to CASP Stage 2 Models. To evaluate the template is found that covers all domains. We expect this to be
performance of the entire TopModel pipeline, the final particularly detrimental for FM targets, most of which have
TopModel models from the CASP datasets are compared multiple domains. To estimate the hypothetical performance
with the highest ranked CASP stage 2 models (CASP stage 2 that TopModel could achieve if multidomain targets were
consists of the top 200 automated server models for each modeled domain-wise and combined in the correct way, the
target) from four established CASP servers: the Zhang*” server CASP domain annotations (released after the end of each
(the best automated server in CASP8-13) and Baker server,*® competition) were used to parse the sequences of multidomain
both of which use domain parsing and ab initio folding as part targets into their respective domains. Each domain was then
of their pipeline, and the HHPred’* and Zhou®” servers, which submitted to TopModel separately, given the same restrictions
do not. Because TopModel has no ab initio folding module as for regular targets to emulate previous CASP rounds. For
and does not parse the target sequence into domains, servers each target, a weighted average (by the number of residues) of
that include such methods are expected to be at an advantage. the GDT_TS scores of the respective domains is calculated as
To evaluate the performance based on the part of the target the hypothetical accuracy if domain parsing and combination
structure that was solved experimentally, rather than the was used. In the same way, the best ranked models of the
sequence submitted for prediction, only experimentally servers used for comparison were parsed into domains, and the
resolved residues were evaluated. For each target, the weighted average GDT_TS was calculated. This eliminates the
GDT_TS score was calculated for the final model produced relative orientation of domains as a factor for GDT_TS, and
by TopModel and the top-ranked model from each of the the difference in scores thus stems from the ability to fold the
servers mentioned above, as well as the distribution of all domains (largely determined by the identification of good
server submissions in the stage 2 dataset. As we are interested templates). It is important to stress here that this analysis is
in the absolute difference in model quality, rather than the done using a posteriori domain assignments, which were
relative increase in model quality, we classify each CASP target determined by experts with access to the known structures.
based on the difference in GDT_TS score (AGDT_TS,,) Therefore, the performance increase of TopModel depicted in
between the final model from TopModel and the top-ranked Figure 4C,D is merely an estimate of the potential upper
model from each server. The results can be found in Figure bound of accuracy that could be obtained if perfect domain
4A,B for TBM and FM targets, respectively. predictions and combination of domains into full-length
1959 https://dx.doi.org/10.1021/acs.jctc.9b00825
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models were available. Given the difficulty of domain boundary
prediction a priori, the boundary predictions of the other
servers are unlikely to be perfect; as a result, they are at a
disadvantage in this comparison.

Then we compare the GDT TS score of models built from
the CASP sequence released for prediction with this weighted
average and evaluate the change in AGDT_TS,,
(AAGDT_TS,,). If AAGDT _TS,, is positive, domain
parsing improves model quality relative to other servers, and
if negative, it deteriorates model quality. The results are
depicted in Figure 4C,D for TBM and FM targets, respectively.

Our findings show that despite being at a disadvantage
compared to the Zhang and Baker servers because of lack of
domain parsing and ab initio folding, 71 and 63% of TBM
target models from TopModel are of comparable quality to the
Zhang and Baker servers, respectively, while 10 and 15% of
TBM target models have a higher quality and 19 and 22% have
a lower quality, respectively (Figure 4A). Compared to pure
template-based servers such as HHPred and Zhou servers, on
the other hand, TopModel has a clear advantage, with 28 and
48% of TBM targets having higher quality and 11 and 6%
having lower quality, respectively. For FM targets, despite
having no ab initio module, TopModel shows comparable
accuracy to the Zhang and Baker servers for 54 and 61% of
targets, respectively (Figure 4B) but a lower accuracy for 41
and 30% of targets, which is not surprising given the lack of ab
initio folding and domain prediction in TopModel (most FM
targets are multidomain targets). In terms of binary
classification (AGDT_TS,,, > 0), TopModel produces better
models for TBM targets than the Zhang and Baker servers in
46% of the cases for both and better models than the HHPred
and Zhou servers in 60, and 71% of the cases, respectively. For
FM targets, the corresponding values are 32 and 39% for
Zhang and Baker servers and 46 and 51% for HHPred and
Zhou servers, respectively. The trend where TopModel
performs better than template-based servers HHPred and
Zhou but worse than the Zhang and Baker servers due to their
use of domain prediction and ab initio folding is also seen
when dividing the CASP targets according to the highest
sequence identity identified by TopModel (Table S8).

The results in Figure 4C,D show that a large improvement is
possible for multidomain targets if the sequence is parsed into
domains, predicted separately, and combined into a full-chain
model. When compared to the Zhang server, for example, for
TBM targets, the percentage of multidomain targets for which
TopModel is worse than the Zhang server drops by 31 points,
while the percentage of targets for which TopModel is better
than the Zhang server increases by 51 points. For FM targets,
the same trend is seen, with the percentage of worse models
dropping by 8 points and the percentage of better models
increasing by 88 points. Similar trends are observed for the
other three investigated servers. This indicates that correctly
parsing the input sequence into domains has a large impact on
the quality of multidomain models, in particular, for FM
targets. Note again, though, that because of the nature of the
analysis using a posteriori-determined domain boundaries,
these results should be considered merely as an outlook for the
potential benefit of accurate domain parsing and not used for
comparing TopModel performance with that of the other
servers.

We speculate that the reason behind this is that accurately
identifying a partially matching template for a large multi-
domain protein is difficult, especially for methods that have
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been trained to identify templates for single domains. As such,
many FM targets may have been classified as such because of a
failure to detect templates using the full sequence as a query
and not because of an actual lack of templates. These results
show that when properly parsed into domains and searching
for each domain, template detection is easier and distant
structural homologues become detectable for many targets that
would traditionally be considered without templates. Thus, a
large model quality improvement is achievable by predicting
domain boundaries and combining the domains into a final
model. However, in order to achieve such accuracy on
prospective targets, accurate domain prediction and domain
combination are required, which is therefore the focus of our
future work.

The results in Figure 4A,B show that TopModel has
comparable or better performance than the average server
submission (gray) for the majority of targets (97% for TBM,
93% for FM) and performs significantly better than template-
based servers without ab initio folding such as the Zhou and
HHPred servers. TopModel even shows comparable or better
performance than the Baker and Zhang servers for 82 and 78%
of TBM targets and 59 and 70% of FM targets, respectively.
These data show the benefit of using a top-down consensus
rather than majority voting and the benefit of combining
threading scores, model quality, and structural alignment using
DNN:ss for ranking and selecting templates.

It is interesting to examine a case such as T0742 from
CASP10. For this target, the vast majority of predictions from
CASP servers, including the consensus-based MULTICOM
server, fail to identify the best template (PDB ID 3TZG,
identity = 14%, coverage = 70%, GDT_TS = 0.31) and instead
predict a fold based on the wrong template identified by the
majority of threaders. TopModel, however, identifies PDB ID
3TZG as the best template, a direct effect of its ability to
discard wrong templates even when the consensus is indicating
that they should be correct. A similar effect is seen for the
prospective modeling of SaNSR (see below).

Hard Cases. Although TopModel correctly folds most
CASP TBM targets and has better template selection and
alignment than any of its primary threaders (Figures 1—3),
there are cases where it fails to predict the best template when
comparing GDT_TS scores to those of other competing
servers. Aside from the issues of simulating previous CASP
rounds mentioned earlier, manual inspection indicated three
main types of such cases where TopModel is at a disadvantage
compared to servers such as those of Zhang and Baker.

First, for several targets, no template is found that covers all
domains of the target. Based on CASP annotations released
after the competitions, 39% of targets in the CASP dataset are
multidomain targets (18% of TBM, 98% of FM). Additionally,
there are several targets (including T0721, T0737, and T0755)
that are nonconsecutive multidomain targets annotated as
single domain by the CASP organizers, for which TopModel
either is only able to match one domain (such as for T075S) or
finds a slightly different and more favorable (better score from
TopScore) conformation, resulting in a lower GDT_TS score
(such as for T0922 and T0833).

Second, there are many targets (in particular, FM targets),
for which the sequence submitted for prediction differs
significantly from that of the resolved native structure. In
most such cases, the native structure covers only a small
fraction of the residues submitted for prediction. This makes
structure prediction much more difficult because threading
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Table 1. Inspection of Hard TopThreader TBM Targets”

ID template threaders identity? (%)
T0700 20VR* HHSearch 17
3v7D (D) HHBIits HHSearch 21
1EZJ (F) pDomThreader 21
T0812 4BQ2* LOMETS 10
1H6Y (1) RAPTORX 12
3LY6 (F) RAPTOR-X 18
T0818 4HYZ* HHBIits HHSearch 15
3HS1 (1) SPARKSX FFAS03 13
4CE4 (F) LOMETS 13

coverage? (%)

Initial Score? TopScore single| GDT_TS?T ™1
79 0.64 0.59 0.49 0.51
52 0.66 0.59 0.35 0.47
60 0.46 0.49 0.21 0.22
87 0.45 0.60 0.28 0.45
60 0.51 0.60 0.12 0.20
59 0.48 0.60 0.14 0.33
5SS 0.64 0.72 0.25 0.37
80 0.68 0.69 0.14 0.34
91 0.56 0.62 0.15 0.25

“Summary of scores for the CASP TBM targets for which TopThreader fails to select the best templates. * indicates the best template according to
the lowest GDT_TS for a model built from that template. (I) indicates the highest ranked template according to the Initial Score, which is a
prediction of template TM-Score using only sequence-derived features from primary threaders. (F) indicates the highest ranked template according
to the Filtering Score, which is a prediction of template TM-Score using both sequence-derived features from primary threaders and the predicted
error in the resulting model according to TopScoreSingle. The GDT_TS and TM columns indicate structural similarity between the best model
from a given template and the native structure (not the TM-Score of the template). The arrows 1| indicate if a score gets better with increasing or

decreasing values, respectively.

algorithms focus on templates that cover as much of the target
sequence as possible, when in fact only a small fraction of it can
be resolved. For these targets, servers that use domain
prediction have an advantage as they mitigate the inherent
threader bias toward high target coverage by cutting the
sequence into predicted domains.

Third, there are a few cases in which TopThreader discards
the best template for TBM targets as a false positive. Three
such cases (T0678, T0700, and T0818) were identified. To
examine these cases, the best template, the highest ranked
template by the Initial Score, and the highest ranked template
identified by the Filtering Score are compared to the native
structure in terms of GDT_TS and TM scores. The results are
shown in Table 1.

T0700. For this target, the best template (PDB ID 20VR) is
discarded because it scores much worse by TopScoreSingle,
which lowers the Filtering Score. This shows that despite
higher coverage, models built from such a template will not
always exhibit a better model quality, and as such, selection by
model quality alone does not guarantee that the best template
is found.

T0812. For this target, the best template (PDB ID 4BQ2)
has a lower Initial Score than both the false-positive templates
PDB ID 1H6Y and PDB ID 3LY6. All three templates result in
models with identical scores from TopScoreSingle. This shows
that using scores from primary threaders alone does not
guarantee that the best template is found.

T0818. For this target, the best template (PDB ID 4HYZ)
has lower coverage and consequently also worse Top-
ScoreSingle score than both the best ranked template
according to the Initial Score (PDB ID 3HS1) and Filtering
Score (PDB ID 4CE4), leading to a false-positive template
being selected because of higher coverage. This is similar to
TO0700 in the sense that a higher weight on the Initial Score
would have led to a better model, but in this case, the template
with lower coverage is better, unlike for T0700 and T0812
where the higher coverage templates are better.

Analyzing the few TBM cases for which TopThreader does
not select the best template shows that template selection is a
complex task and that no single feature is likely to result in a
flawless prediction for every target. However, the performance
of TopThreader (Figure 2) shows that taking features from
both primary threaders and model quality into account using
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DNNs significantly improved template selection. We expect
that using predicted residue—residue contacts can further
improve the template selection to resolve such issues.

Prospective Prediction and Experimental Validation
of SaNSR. Because TopModel uses a different consensus
methodology than other methods, it can potentially go against
the majority of threading results and give a prediction better
than any of its constituent predictors. To illustrate the effect of
this kind of consensus, we prospectively predicted the structure
of SaNSR (PDB ID 4Y68) prior to experimental structure
determination and submission to the PDB. SaNSR is a
member of the S41 protease family, which degrades the
lantibiotic nisin, and thus contributes to the congenital
resistance against nisin of S. agalactiae.”'

We then compared the model from TopModel to the
distribution of primary threader models in terms of how close
each model is to the experimental structure (measured by
GDT_TS) (Figure S). The results reveal that models based on
most of the primary threader alignments are of poor quality,
with a median GDT_TS score of 38, while the model from
TopModel is much more accurate, with a GDT_TS score of
55 and a C,, atom root-mean-square deviation (rmsd) of 3.1 A.
The main reason for the failing of primary threaders in this
case is that in most available templates, there are one or more
large domain insertions. This causes the majority (82%) of
threaders to thread the N-terminal helix bundle sequence onto
the wrong domain (see the SPARKSX example in Figure $)
because of low (<16%) sequence identity, incorrectly folding it
into a f-sheet domain. However, because this -sheet domain
is scored poorly by TopScore and TopScoreSingle, the helix
bundle is recovered in the model from TopModel. There is a
minority of primary predictor models (18%) that show a
correctly aligned helix bundle N-terminal domain. However,
these contain significant differences in other parts of the model
and are with traditional majority voting consensus far
outweighed by the incorrect alignments, showing the benefit
of using a top-down consensus approach rather than majority
voting.

Prospective Prediction and Experimental Validation
of LipoP from C. difficile. Building on the previous successes,
TopModel was used to prospectively predict the structure of
the lipoprotein LipoP from C. difficile (C. difficile). The
lipoprotein is encoded as the gene CD1348 in the genome of

https://dx.doi.org/10.1021/acs.jctc.9b00825
J. Chem. Theory Comput. 2020, 16, 1953—1967


pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00825?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

TopModeI 0.55

RAPTORX 0.49

FFAS03: 0. 32

GDT_TS (%)

60

Figure S. Prospective modeling of the NSR protein from S. agalactiae.
The model quality distribution (in terms of GDT_TS score) of
primary threader models for the NSR protein from S. agalactiae for
prospective modeling before the release of the native structure (gray)
to the PDB. The vast majority (82%) of models show an incorrectly
threaded N-terminal domain (see the SPARKSX model). A minority
of models (18%) show a correctly threaded helical domain
(HHSearch, RAPTORX, and FFAS03) on a few templates, often
with large errors elsewhere in the model (such as f-sheets shown in
red). Because TopModel does not use majority voting, the model
produced (blue box) is of far better quality (GDT_TS = S5) than
those produced by primary threaders (median GDT_TS = 38), while
majority voting consensus would produce a model in the middle of
the distribution at a GDT_TS of ~38. Model examples from the
different bins are colored according to the residue-wise IDDT score™
to the native structure, with red showing incorrectly modeled regions
and blue showing perfect agreement with the crystal. The largest error
in the TopModel model is the fact that the residues linking the helical
bundle with the catalytic core of the protein do not fold into an a-
helix (red box). This is because no model from any of the primary
predictors correctly folds these residues into a helix, and as such,
TopRefiner has no fragment that it can select during model
fragmenting and refinement, which would produce a hehx for these
residues; the secondary structure prediction by PSIPRED*® also fails
to identify these residues as helical.

C. difficile directly in front of the CprABC operon, which
confers re51stance agamst antimicrobial compounds such as the
lantibiotic nisin.”” Similar to the NSR protein, LipoP is likely
involved in lantibiotic resistance, although its exact function
remains unresolved to date. Database searches revealed that
this protein is only present in the genus of Clostridia.
The templates identified by TopThreader (sequence identity
in parenthesis; chain after the “_”) are PDB IDs SJ7R_A
(11%), 6GZ8_A (18%), 2JNV_A (18%), 505]_C (9%), and
3GKU_A (8%). Interestingly, the top-ranked structure PDB
ID SJ7R is a putative lipoprotein from Clostridium perfringens,
and as such, it is suggested to share the biological function with
the homologue from C. difficile, despite the sequence identity
being far below the 30% sequence identity limit generally
onsidered the twilight zone for template-based structure
prediction.”” The final model quality predicted by TopScore
was 0.3S, indicating about 35% error in the model. This shows
that the model may not be highly confident, which is expected
given the low sequence identity and the fact that the first 43
residues (28% of the protein) of the N-terminus (termed the
tail region) are unstructured and therefore highly mobile (a
description of the tail region is available in the Supporting
Information Text T7). To validate the model and identify
errors, NMR experiments were therefore carried out to
determine the secondary structure and f-strand pairing, and
SAXS experiments were performed to estimate the shape and
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radius of gyration (Rg). A detailed description of the NMR and
SAXS experiments can be found in the Supporting Information
Text T7.

The initial model from TopModel has a good agreement
with the secondary structure assignment and matches two out
of three NOE f-strand pairings (strand 1/2 and strand 4/5)
from NMR. The Matthews correlation coefficient (MCC)
between the DSSP® secondary structure of the model from
TopModel and the experimental assignment from NMR is 0.81
for f-strands, 0.68 for a-helices, and 0.66 for coil. However,
there are still discrepancies between the predicted model and
the experimental data. Four differences can be identified
(Figure 6A,B): (1) a-helix 1 is eight residues shorter in the

Local TopScore

TopScore 0.54

Figure 6. Prospective modeling of LipoP from C. difficile (disordered
tail not shown for clarity). (A) Agreement of the TopModel model
with secondary structure assignments and NOE restraints from NMR.
Blue: f-sheet residues showing agreement between the model and
NMR data. Orange: residues identified to be in a f-strand in NMR
but not found so in the model. Cyan: a-helical residues showing
agreement between the model and NMR data. Red: residues
identified to be a-helical in NMR but not found so in the model.
Magenta lines: experimental f-sheet NOE restraints showing
agreement with the model. Red lines: experimental fB-sheet NOE
restraints showing a shift of two residue positions of f-strand 3 (**).
(B) Model colored according to residue-wise TopScore. Yellow/red
regions indicate regions with a high residue-wise error (>50%). C.
Best model (according to TopScore) from primary predictors
(dPPAS2 from the LOMETS server). The coloring scheme is the
same as in (A). (D) Best model (according to TopScore) from
primary predictors (dPPAS2 from the LOMETS server). The coloring
scheme is the same as in (B) The shift of f-strand 3 (***) is only one
residue in this model, placing two hydrophobic valines on the wrong
side of the sheet and exposing them to the solvent. Furthermore, -
strands 1 (*) and 2 (**) are exposed to the solvent, exposing five
hydrophobic isoleucines and one leucine to the solvent, all of which
are buried in the TopModel prediction. Numbers 1—4 relate to the
location of the errors described in the main text for panels (A,B) and
corresponding locations in the best primary threader model in panels
(C,D). In panels (A,B), these errors are caused by the fact that no
template-based model from any primary predictor folds these regions
correctly, which leaves TopRefiner unable to select a correctly folded
fragment for these residues.

model than indicated by NMR, which is also indicated by
TopScore showing the loop between a-helix 1 and S-strand 3
to have a high error (>50% residue-wise error). This is also the
reason that random coil and helical MCCs are much lower
than those for f-strands. (2) f-Strand 3 is indicated by NMR
NOE measurements to be shifted by two residues, which
produces a longer loop between a-helix 1 and S-strand 3, the
loop indicated by TopScore to contain high errors. Because the
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shift is of two residues, the hydrophobic valines in this sheet
are still buried. (3) According to NMR, the C-terminus of the
protein is folded into a f-strand, which most likely pairs up
with the previous stand (f3-strand 6), which in the model is too
short by three residues. (4) a-Helix 2 scores poorly according
to TopScore because of a difference in the helix length of one
residue and its proximity to errors 1 and 2.

All of the differences in the LipoP model are due to the fact
that TopModel is a template-based structure prediction
method, which does not use ab initio folding. When none of
the initial template-based models from pairwise or multi-
template alignments produce correct structural fragments,
TopRefiner is unable to select a fragment with the correct fold
for such residues. A comparison of the final model from
TopModel and the two highest ranked templates is shown in
Figure S4 and illustrates this point. To correct differences such
as these, ab initio folding is required in order to supplement
the template-based model ensemble with models from ab initio
folding and enable TopRefiner to select folded fragments not
present in the templates. The Zhang server’” had the same
issue, which was remedied by the inclusion of ab initio models
from QUARK.™ It is important to note, however, that without
the use of TopModel, the highest scoring model from primary
threading alignments, generated by dPPAS2 from the
LOMETS server, is of much lower quality (Figure 6C,D).

Because TopModel does not include any ab initio folding as
of yet, we carried out molecular dynamics (MD) simulations
for a total of 600 ns starting from the TopModel model, either
using only the folded domain or the full-length sequence
including the disordered tail, in an attempt to improve
agreement with the available experimental data in terms of
NMR secondary structure assignment and radius of gyration
(R,) from SAXS. The best snapshot from the globular domain
simulations and the best snapshot from the full length model
simulations were selected according to agreement with NMR
and SAXS data, respectively. These two snapshots were
combined with TopBuilder and energy-minimized to create a
final full-length refined model (Figure 7). A detailed
description of the MD simulations, the selection protocol,
and the structural refinement can be found in the Supporting
Information Text T7. The final refined model shows a
secondary structure MCC of 0.81 for f-sheets, 0.88 for a-
helices, and 0.78 for random coils. The propensity for each
residue to be helical or B-sheet across all simulations can be
found in Figure SS. The initial shape agreement with SAXS
(see Table S9 and Figure S7 for experimental data) has a y* of
49.8 (Figure S7A,B), which is high but not surprising given the
highly mobile disordered tail. The model shows a radius of
gyration of 26.7 A, which compares favorably to the
experimentally determined value of 24.3 A (Table S9). Most
interestingly, in the MD simulations, the loop between a-helix
1 and f-strand 3 shows some a-helix formation (see Figure S6
for a normalized distribution of secondary structure agreement
with NMR across the MD simulations). After combining the
two models agreeing best with NMR and SAXS using
TopBuilder, we find that error (1) (Figure 7A,B) has been
mostly corrected, in that a-helix 1 has been extended to nearly
the same length indicated by NMR. None of the other errors
were significantly impacted by the MD refinement; however,
one cannot expect MD simulations to be able to fix alignment
errors on the time scales applied (20 X 30 ns).

To explore if the high 4 with respect to SAXS data is caused
by the disordered tail, a truncated version of the protein was
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Figure 7. Model of LipoP from C. difficile after MD refinement and
selection according to agreement with sparse experimental structural
data. (A) Agreement of the TopModel model with secondary
structure assignments and NOE restraints from NMR. The numbers
indicate the location of errors, as described in the text previously. This
panel is as in Figure 6A and again shown for ease of comparison here.
Blue: f-sheet residues showing agreement between model and NMR
data. Orange: residues identified to be in a f-strand in NMR but not
found so in the model. Cyan: a-helical residues showing agreement
between the model and NMR data. Red: residues identified to be a-
helical in NMR but not found so in the model. Magenta lines:
experimental f-sheet NOE restraints showing agreement with the
model. Red lines: experimental -sheet NOE restraints showing a shift
of two residue positions of f-strand 3. (B) Agreement between the
model after MD refinement, selection according to the agreement
with experimental NMR and SAXS data, and combination with
TopBuilder (see the main text and Supporting Information Text T7
for details) and experimental NMR data; colors are following the
same scheme as in panel (A). The extension of a-helix 1 is seen. (C)
Agreement between the experimental scattering data from SAXS
(black) and simulated scattering curve of the MD model (red);
FoXS*®! was used for simulating the scattering curve. The fit plots
depict log-intensity vs q¢ (A™'), and the residual plot shows the
difference between experimental and computed intensity vs g (A™").
(D) Volumetric envelope of LipoP, as calculated from the scattering
data using GASBOR,*” is shown in gray mesh. The MD model of
LipoP (green) was docked into the volumetric envelope using
SUPCOMB.* Disagreement with SAXS is found mainly for the
disordered tail of LipoP.

expressed, in which the first 30 of the 43 disordered tail
residues were removed. When SAXS measurements of the
truncated protein are compared to the full-length model after
MD refinement and combination with TopBuilder (Figure 7A)
from which the same tail residues were removed, the shape
agreement increases markedly, as indicated by a drop in y*
from 49.8 to 3.9 (Figures 7C,D and S7), confirming that the
initial disagreement with the full-length SAXS data is indeed
caused by the high mobility of the disordered tail and that the
shape of the folded domain shows a high agreement with the
experiment.

In short, the modeling of LipoP from C. difficile clearly
demonstrates the value of close interplay between computa-
tional structure prediction with TopModel and the use of
sparse experimental structural data not only to validate and
improve the predicted model but also to identify structural
parts that still lack accuracy.

Preliminary Competition in CASP13. Despite Top-
Model development not being finished at the time of the
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CASP13 competition, in particular, lacking most of the
TopRefiner module, we decided to compete as a human
server. The CASP12 and CASP13 competitions saw a huge
impact of recent developments in ab initio folding in terms of
highly accurate residue—residue contact and distance pre-
dictions, which also have had a large impact in template
selection to remove false-positive templates. CASP13 also had
the highest number of multidomain targets of any CASP
competition to date, with some targets having more than 1000
residues. As such, we did not expect TopModel to rank very
well compared to servers that utilize these tools such as the
Zhang and A7D servers. TopModel showed a very good
performance for several targets, however, most notably targets
T1016-D1 (Figure 8A), T1014-D2 (Figure 8B), and T0964-

Figure 8. Examples of highly accurate structure predictions from
TopModel in CASP13. (A) T1016-D1: A7D predicted the best model
(blue) and TopModel predicted the second best one (orange)

(GDT_TSropmoder = 81.9, GDT_TSp,, = 85.4, Ca'rdeTopModeI to_Best
= L1 A). (BS T1014-D2: McGuffin predicted the best model (blue)
and TopModel predicted the second best one (orange)
(GDT_TSTopModel =76.4, GDT_TSg = 76.7, Ca‘rdeTopModel to_Best
= 1.5 A). (C) T0964-D1: MESHI predicted the best model (blue)
and TopModel predicted the second best one (orange)
(GDT_TsTopModel =787, GDT_TSg, = 80.0, Ca‘rdeTopModel to_Best
= 1.6 A). rmsd was calculated using the align function in PyMol.**
The native structures were not released while writing this article.

D1 (Figure 8C), for which the models produced by TopModel
were ranked second. Overall, our findings in CASP13 confirm
our conclusions from our own benchmarking on the CASP
dataset, in that while deep learning does improve template-
based structure prediction, ab initio folding and domain
prediction are required for folding large multidomain
structures and structures without known templates.

B CONCLUDING REMARKS

In this study, we introduced TopModel, a fully automated
meta-method for protein structure prediction, which improves
template-based threading beyond any of the 12 evaluated
primary predictors. Instead of using majority voting during
template selection and model averaging during refinement as
other approaches,""** TopModel uses top-down consensus
and DNNss to select templates and identify and correct wrongly
modeled regions. TopModel builds on numerous well-founded
approaches to template-based structure prediction in terms of
primary programs used for threading, alignment, model
building, refinement, and model quality estimation. Yet, aside
from the aspect of automation, TopModel offers several
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advantages over using these programs individually: we
demonstrate a significant improvement for template selection
and alignment accuracy because of sophisticated template
selection with TopThreader, use of multiple alternate align-
ments between different combinations of templates with
TopAligner, and model refinement with TopRefiner using
TopScore and TopScoreSingle to detect wrongly modeled
regions of the protein.

By applying TopModel to our CASP dataset, which includes
targets from CASP10, 11, and 12 with released structures, we
showed that TopModel consistently performs better than the
average competing server and outperforms established
template-based servers such as the Zhou and HHPred servers.
Yet, we identified two areas in which TopModel currently falls
short of state-of-the art predictors, mainly in terms of ab initio
structure prediction and domain prediction for multidomain
targets. As seen for top ranking servers in CASP12 and
CASP13, such methods are required to be competitive for
multidomain targets for which no template is available that
covers all domains or for targets for which a correct template
structure cannot be detected by threading.

Because of its meta-server composite nature, running
TopModel usually takes 24—48 h on four cores for medium-
sized proteins of 100—200 residues but may take up to a week
for larger proteins. Parsing the input sequence into domains
will clearly be beneficial here, as each domain can then be
predicted in parallel, which will significantly decrease the total
runtime. Proceeding that way is comparable to other folding
methods such as the Zhang or Baker servers.

TopModel currently treats all proteins the same without
special regard for specific classes such as transmembrane
proteins, intrinsically disordered proteins, solenoid proteins, or
coiled-coil proteins. These special classes exhibit traits,
however, that can be predicted, such as transmembrane
topology, intrinsic disorder, or coiled-coil regions. We intend
to implement a meta-predictor of such protein characteristics
to optimize the template selection performance of TopModel.

Early versions of TopModel have been applied to several
systems, includinég enzymes,”* ethylene receptors,”® and
restriction factors,”" and yielded good predictions that agreed
with experimental results and/or allowed for guiding of
biochemical experiments. Here, we applied TopModel to
predict the structure of the SaNSR protein de novo;
subsequent experimental structure determination by X-ray
crystallography showed that TopModel predicted the correct
fold even when the vast majority of primary threaders
produced incorrect alignments and models. Finally, we used
TopModel to predict the structure of LipoP, which showed
good agreement with data from NMR spectroscopy and SAXS.
The modeling of LipoP highlights the utility of the method and
shows how the close interplay between computational
structure prediction and sparse or low-resolution experimental
data can be used synergistically to improve the final model.

Opverall, we have shown that TopModel outperforms other
stand-alone methods in the field with regard to template
selection, template—target alignment, and model quality.
However, TopModel is at a disadvantage when compared to
black-box automated online servers, which utilize recent
developments in residue—residue contact predictions, ab initio
folding, and domain predictions. Therefore, we are focusing
future work on contact prediction, ab initio folding, and
domain prediction to improve the performance of TopModel
for such targets. The TopModel suite is available as stand-
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alone program from https://cpclab.uni-duesseldorf.de/index.
php/Software. See Supporting Information Text T8 with
respect to a description of the TopSuite content and disk space
requirements.

B ASSOCIATED CONTENT

® Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825.

Detailed descriptions of TopThreader, TopAligner,
TopBuilder, and TopRefiner; brief descriptions of the
primary methods used as part of TopThreader and
TopAligner; detailed description of the training and test
datasets and the training of the DNNs and DNN
features and architectures for TopThreader; targets in
the CASP evaluation dataset; numerical data for the
evaluation of TopThreader performance on this dataset
in terms of template selection and template ranking
compared to primary predictors; and detailed descrip-
tions of the experimental validation, data collection, and
MD simulation-based refinement for LipoP from C.

difficile (PDF)

B AUTHOR INFORMATION

Corresponding Author

Holger Gohlke — Institut fiir Pharmazeutische und Medizinische
Chemie, Heinrich-Heine-Universitit Diisseldorf, 40225
Diisseldorf, Germany; Institute of Biological Information
Processing (IBI-7: Structural Biochemistry) & JuStruct and
John von Neumann Institute for Computing (NIC) & Jiilich
Supercomputing Centre (JSC), Forschungszentrum Jilich
GmbH, 52425 Jiilich, Germany; © orcid.org/0000-0001-
8613-1447; Phone: (+49) 211 81 13662; Email: gohlke@
uni-duesseldorf.de; Fax: (+49) 211 81 13847

Authors

Daniel Mulnaes — Institut fiir Pharmazeutische und
Medizinische Chemie, Heinrich-Heine-Universitat Diisseldorf,
40225 Disseldorf, Germany

Nicola Porta — Institut fiir Pharmazeutische und Medizinische
Chemie, Heinrich-Heine-Universitit Diisseldorf, 40225
Diisseldorf, Germany

Rebecca Clemens — Institute fiir Biochemie, Heinrich-Heine-
Universitat Diisseldorf, 40225 Diisseldorf, Germany

Irina Apanasenko — Institut fiir Physikalische Biologie,
Heinrich-Heine-Universitat Diisseldorf, 40225 Diisseldorf,
Germany; Institute of Biological Information Processing (IBL-7:
Structural Biochemistry) & JuStruct, Forschungszentrum Julich
GmbH, 52425 Jilich, Germany

Jens Reiners — Institute fir Biochemie, Heinrich-Heine-
Universitat Diisseldorf, 4022S Diisseldorf, Germany; Center for
Structural Studies Heinrich-Heine-Universitat Diisseldorf,
40225 Disseldorf, Germany

Lothar Gremer — Institut fiir Physikalische Biologie, Heinrich-
Heine-Universitat Diisseldorf, 40225 Disseldorf, Germany;
Institute of Biological Information Processing (IBI-7: Structural
Biochemistry) & JuStruct, Forschungszentrum Jiilich GmbH,
52425 Julich, Germany

Philipp Neudecker — Institut fiir Physikalische Biologie,
Heinrich-Heine-Universitat Diisseldorf, 40225 Diisseldorf,
Germany; Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & JuStruct, Forschungszentrum Juilich

GmbH, 52428 Julich, Germany;
0557-966X

Sander H. J. Smits — Institute fiir Biochemie, Heinrich-Heine-
Universitiat Diisseldorf, 40228 Diisseldorf, Germany; Center for
Structural Studies Heinrich-Heine-Universitat Diisseldorf,
40225 Disseldorf, Germany

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.9b00825

orcid.org/0000-0002-

Author Contributions

H.G. and D.M. jointly conceived the study. D.M. developed
the method, performed computations, analyzed the results, and
wrote the manuscript. N.P. performed the molecular dynamics
simulations and analyzed the disordered tail. H.G. supervised
and managed the project, secured funding and resources for
the project, and revised the manuscript. R.C. prepared samples
for SAXS. J.R. performed SAXS measurement and data
analysis. R.C., L.G,, and S.S. prepared the NMR samples.
P.N. recorded the NMR experiments. I.A. and P.N. analyzed
the NMR spectra. All authors reviewed and approved the
manuscript.

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

We are grateful to the developers of all primary programs used
in this work for making their methods available as stand-alone
to the scientific community. In particular, we are thankful to
the developers of Phyrestorm for providing their clustering tree
and the developers of MergeAlign2 for providing matrices used
for multiple alignment with MergeAlign2. We acknowledge
access to the Jiilich-Diisseldorf Biomolecular NMR Center.
This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) — Projektnummer 267205415/SFB 1208 (project A03 to
HG and B03 to PN) and Projektnummer 270650915 /
Research Training Group GRK 2158 (project TP4a to HG and
SS)-, and by the Bundesministerium fiir Bildung und
Forschung (BMBF) — Forderkennzeichen 031L0182 /
InCelluloProtStruct to H.G. We are grateful for the computa-
tional support and infrastructure provided by the “Zentrum fiir
Informations- und Medientechnologie” (ZIM) at the Heinrich
Heine University Diisseldorf and the computing time provided
by the John von Neumann Institute for Computing (NIC) to
H.G. on the supercomputer JUWELS at Jilich Super-
computing Centre (JSC) (user ID: HKF7). The Center for
Structural Studies is funded by the Deutsche Forschungsge-
meinschaft (DFG grant numbers 417919780 and INST 208/
761-1 FUGG).

B REFERENCES

(1) Rathi, P. C.; Hoffken, H. W.; Gohlke, H. Quality matters:
Extension of clusters of residues with good hydrophobic contacts
stabilize (hyper) thermophilic proteins. J. Chem. Inf. Model. 2014, 54,
355-361.

(2) Widderich, N.; Pittelkow, M.; Hoppner, A.; Mulnaes, D.; Buckel,
W.; Gohlke, H.; Smits, S. H. J; Bremer, E. Molecular dynamics
simulations and structure-guided mutagenesis provide insight into the
architecture of the catalytic core of the ectoine hydroxylase. J. Mol.
Biol. 2014, 426, 586—600.

(3) Ingles-Prieto, A.; Ibarra-Molero, B.; Delgado-Delgado, A.; Perez-
Jimenez, R.; Fernandez, J. M.; Gaucher, E. A,; Sanchez-Ruiz, J. M,;

https://dx.doi.org/10.1021/acs.jctc.9b00825
J. Chem. Theory Comput. 2020, 16, 1953—1967


https://cpclab.uni-duesseldorf.de/index.php/Software
https://cpclab.uni-duesseldorf.de/index.php/Software
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00825/suppl_file/ct9b00825_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00825/suppl_file/ct9b00825_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Holger+Gohlke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8613-1447
http://orcid.org/0000-0001-8613-1447
mailto:gohlke@uni-duesseldorf.de
mailto:gohlke@uni-duesseldorf.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Mulnaes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicola+Porta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rebecca+Clemens"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Irina+Apanasenko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jens+Reiners"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lothar+Gremer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philipp+Neudecker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0557-966X
http://orcid.org/0000-0002-0557-966X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sander+H.+J.+Smits"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?ref=pdf
https://dx.doi.org/10.1021/ci400568c
https://dx.doi.org/10.1021/ci400568c
https://dx.doi.org/10.1021/ci400568c
https://dx.doi.org/10.1016/j.jmb.2013.10.028
https://dx.doi.org/10.1016/j.jmb.2013.10.028
https://dx.doi.org/10.1016/j.jmb.2013.10.028
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00825?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Gavira, J. A. Conservation of protein structure over four billion years.
Structure 2013, 21, 1690—1697.

(4) Gohlke, H.; Hergert, U.; Meyer, T.; Mulnaes, D.; Grieshaber, M.
K; Smits, S. H. J; Schmitt, L. Binding region of alanopine
dehydrogenase predicted by unbiased molecular dynamics simulations
of ligand diffusion. J. Chem. Inf. Model. 2013, 53, 2493—2498.

(5) Yang, J; Roy, A; Zhang, Y. Protein—ligand binding site
recognition using complementary binding-specific substructure
comparison and sequence profile alignment. Bioinformatics 2013,
29, 2588.

(6) Janin, J. Assessing predictions of protein—protein interaction: the
CAPRI experiment. Protein Sci. 2008, 14, 278—283.

(7) Achle, W,; Sobek, H.; Amory, A, Vetter, R; Wilke, D.;
Schomburg, D. Rational protein engineering and industrial
application: Structure prediction by homology and rational design
of protein-variants with improved “washing performance”—the
alkaline protease from Bacillus alcalophilus. J. Biotechnol. 1993, 28,
31-40.

(8) Cavasotto, C. N.; Phatak, S. S. Homology modeling in drug
discovery: current trends and applications. Drug discovery today 2009,
14, 676—683.

(9) Roy, A,; Yang, J; Zhang, Y. COFACTOR: an accurate
comparative algorithm for structure-based protein function annota-
tion. Nucleic Acids Res. 2012, 40, W471.

(10) Roche, D. B.; Buenavista, M. T.; Mcguffin, L. J. The
FunFOLD?2 server for the prediction of protein—ligand interactions.
Nucleic Acids Res. 2013, 41, W303—W307.

(11) Zhang, Y. Protein structure prediction: when is it useful? Curr.
Opin. Struct. Biol. 2009, 19, 145—155.

(12) Altschul, S.; Madden, T. L.; Schiffer, A. A,; Zhang, J.; Zhang,
Z.; Miller, W.; Lipman, D. J. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res.
1997, 25, 3389—3402.

(13) Jones, D. T. Protein secondary structure prediction based on
position-specific scoring matrices. J. Mol. Biol. 1999, 292, 195—202.

(14) Boratyn, G. M,; Schiffer, A. A.; Agarwala, R; Altschul, S. F,;
Lipman, D. J; Madden, T. L. Domain enhanced lookup time
accelerated BLAST. Biol. Direct 2012, 7, 12.

(15) Panchenko, A. R. Finding weak similarities between proteins by
sequence profile comparison. Nucleic Acids Res. 2003, 31, 683—689.

(16) Rychlewski, L.; Li, W.; Jaroszewski, L.; Godzik, A. Comparison
of sequence profiles. Strategies for structural predictions using
sequence information. Protein Sci. 2000, 9, 232—241.

(17) Lobley, A.; Sadowski, M. L; Jones, D. T. pGenTHREADER and
pDomTHREADER: new methods for improved protein fold
recognition and superfamily discrimination. Bioinformatics 2009, 25,
1761-1767.

(18) Soding, J. Protein homology detection by HMM—HMM
comparison. Bioinformatics 2008, 21, 951—960.

(19) Eddy, S. R. Accelerated profile HMM searches. PLoS Comput.
Biol. 2011, 7, No. e1002195.

(20) Remmert, M.; Biegert, A; Hauser, A; Soding, J. HHblits:
lightning-fast iterative protein sequence searching by HMM-HMM
alignment. Nat. Methods 2012, 9, 173—175.

(21) Madera, M. Profile Comparer: a program for scoring and
aligning profile hidden Markov models. Bioinformatics 2008, 24,
2630—2631.

(22) Karplus, K. SAM-T08, HMM-based protein structure
prediction. Nucleic Acids Res. 2009, 37, W492.

(23) Xu, D.; Jaroszewski, L.; Li, Z.; Godzik, A. FFAS-3D: improving
fold recognition by including optimized structural features and
template re-ranking. Bioinformatics 2013, 30, 660.

(24) Chakravarty, S.; Varadarajan, R. Residue depth: a novel
parameter for the analysis of protein structure and stability. Structure
1999, 7, 723—732.

(25) Wu, S;; Zhang, Y. MUSTER: improving protein sequence
profile—profile alignments by using multiple sources of structure
information. Proteins: Struct, Funct, Bioinf. 2008, 72, 547—556.

1966

(26) Peng, J.; Xu, J. RaptorX: exploiting structure information for
protein alignment by statistical inference. Proteins: Struct, Funct,
Bioinf. 2011, 79, 161—171.

(27) Yang, Y.; Faraggi, E.; Zhao, H.; Zhou, Y. Improving protein fold
recognition and template-based modeling by employing probabilistic-
based matching between predicted one-dimensional structural
properties of query and corresponding native properties of templates.
Bioinformatics 2011, 27, 2076—2082.

(28) Zhou, H.; Zhou, Y. Fold recognition by combining sequence
profiles derived from evolution and from depth-dependent structural
alignment of fragments. Proteins: Struct,, Funct, Bioinf. 2005, 58, 321—
328.

(29) Fernandez-Fuentes, N.; Rai, B. K; Madrid-Aliste, C. J;
Eduardo Fajardo, J.; Fiser, A. Comparative protein structure modeling
by combining multiple templates and optimizing sequence-to-
structure alignments. Bioinformatics 2007, 23, 2558—2565.

(30) Moult, J. A decade of CASP: progress, bottlenecks and
prognosis in protein structure prediction. Curr. Opin. Struct. Biol.
2005, 15, 285—289.

(31) Floudas, C. A; Fung, H. K.; Mcallister, S. R.; Monnigmann, M.;
Rajgaria, R. Advances in protein structure prediction and de novo
protein design: A review. Chem. Eng. Sci. 2006, 61, 966—988.

(32) Rychlewski, L.; Fischer, D. LiveBench-8: The large-scale,
continuous assessment of automated protein structure prediction.
Protein Sci. 2009, 14, 240—24S.

(33) Wu, S.; Zhang, Y. LOMETS: a local meta-threading-server for
protein structure prediction. Nucleic Acids Res. 2007, 35, 3375—3382.

(34) Wang, Z.; Eickholt, J.; Cheng, J. MULTICOM: a multi-level
combination approach to protein structure prediction and its
assessments in CASP8. Bioinformatics 2010, 26, 882—888.

(35) Moult, J; Fidelis, K; Kryshtafovych, A; Schwede, T.;
Tramontano, A. Critical assessment of methods of protein structure
prediction (CASP)—round x. Proteins: Struct., Funct., Bioinf. 2014, 82,
1-6.

(36) Schaarschmidt, J.; Monastyrskyy, B.; Kryshtafovych, A.; Bonvin,
A. M. J. J. Assessment of contact predictions in CASP12: Co-
evolution and deep learning coming of age. Proteins: Struct, Funct,
Bioinf. 2018, 86, S1—66.

(37) Webb, B.; Sali, A. Comparative protein structure modeling
using Modeller. Curr. Protoc. Bioinf. 2014, 47, 5.6.1—5.6.32.

(38) Rohl, C. A; Strauss, C. E.; Misura, K. M.; Baker, D. Protein
structure prediction using Rosetta. Methods in Enzymology; Elsevier,
2004; Vol. 383, pp 66—93.

(39) Mulnaes, D.; Gohlke, H. TopScore: Using Deep Neural
Networks and Large Diverse Data Sets for Accurate Protein Model
Quality Assessment. J. Chem. Theory Comput. 2018, 14, 6117.

(40) Zhang, Y.; Skolnick, J. TM-align: a protein structure alignment
algorithm based on the TM-score. Nucleic Acids Res. 2005, 33, 2302—
2309.

(41) Li, J; Deng, X; Eickholt, J; Cheng, J. Designing and
benchmarking the MULTICOM protein structure prediction system.
BMC Struct. Biol. 2013, 13, 2.

(42) Zhang, Y. I-TASSER server for protein 3D structure prediction.
BMC Bioinf. 2008, 9, 40.

(43) Kryshtafovych, A.; Barbato, A.; Fidelis, K.; Monastyrskyy, B.;
Schwede, T.; Tramontano, A. Assessment of the assessment:
evaluation of the model quality estimates in CASP10. Proteins: Struct.,
Funct,, Bioinf. 2014, 82, 112—126.

(44) Wang, Q.; Canutescu, A. A.; Dunbrack, R. L., Jr SCWRL and
MOolIDE: computer programs for side-chain conformation prediction
and homology modeling. Nat. Protoc. 2008, 3, 1832.

(45) Miao, Z.; Cao, Y.; Jiang, T. RASP: rapid modeling of protein
side chain conformations. Bioinformatics 2011, 27, 3117—3122.

(46) Xu, D.; Zhang, Y. Improving the physical realism and structural
accuracy of protein models by a two-step atomic-level energy
minimization. Biophys. J. 2011, 101, 2525—-2534.

(47) Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: an
interactive web server for efficient protein structure refinement.
Nucleic Acids Res. 2016, 44, W406—W409.

https://dx.doi.org/10.1021/acs.jctc.9b00825
J. Chem. Theory Comput. 2020, 16, 1953—1967


https://dx.doi.org/10.1016/j.str.2013.06.020
https://dx.doi.org/10.1021/ci400370y
https://dx.doi.org/10.1021/ci400370y
https://dx.doi.org/10.1021/ci400370y
https://dx.doi.org/10.1093/bioinformatics/btt447
https://dx.doi.org/10.1093/bioinformatics/btt447
https://dx.doi.org/10.1093/bioinformatics/btt447
https://dx.doi.org/10.1110/ps.041081905
https://dx.doi.org/10.1110/ps.041081905
https://dx.doi.org/10.1016/0168-1656(93)90123-5
https://dx.doi.org/10.1016/0168-1656(93)90123-5
https://dx.doi.org/10.1016/0168-1656(93)90123-5
https://dx.doi.org/10.1016/0168-1656(93)90123-5
https://dx.doi.org/10.1016/j.drudis.2009.04.006
https://dx.doi.org/10.1016/j.drudis.2009.04.006
https://dx.doi.org/10.1093/nar/gks372
https://dx.doi.org/10.1093/nar/gks372
https://dx.doi.org/10.1093/nar/gks372
https://dx.doi.org/10.1093/nar/gkt498
https://dx.doi.org/10.1093/nar/gkt498
https://dx.doi.org/10.1016/j.sbi.2009.02.005
https://dx.doi.org/10.1093/nar/25.17.3389
https://dx.doi.org/10.1093/nar/25.17.3389
https://dx.doi.org/10.1006/jmbi.1999.3091
https://dx.doi.org/10.1006/jmbi.1999.3091
https://dx.doi.org/10.1186/1745-6150-7-12
https://dx.doi.org/10.1186/1745-6150-7-12
https://dx.doi.org/10.1093/nar/gkg154
https://dx.doi.org/10.1093/nar/gkg154
https://dx.doi.org/10.1110/ps.9.2.232
https://dx.doi.org/10.1110/ps.9.2.232
https://dx.doi.org/10.1110/ps.9.2.232
https://dx.doi.org/10.1093/bioinformatics/btp302
https://dx.doi.org/10.1093/bioinformatics/btp302
https://dx.doi.org/10.1093/bioinformatics/btp302
https://dx.doi.org/10.1093/bioinformatics/bti125
https://dx.doi.org/10.1093/bioinformatics/bti125
https://dx.doi.org/10.1371/journal.pcbi.1002195
https://dx.doi.org/10.1038/nmeth.1818
https://dx.doi.org/10.1038/nmeth.1818
https://dx.doi.org/10.1038/nmeth.1818
https://dx.doi.org/10.1093/bioinformatics/btn504
https://dx.doi.org/10.1093/bioinformatics/btn504
https://dx.doi.org/10.1093/nar/gkp403
https://dx.doi.org/10.1093/nar/gkp403
https://dx.doi.org/10.1093/bioinformatics/btt578
https://dx.doi.org/10.1093/bioinformatics/btt578
https://dx.doi.org/10.1093/bioinformatics/btt578
https://dx.doi.org/10.1016/s0969-2126(99)80097-5
https://dx.doi.org/10.1016/s0969-2126(99)80097-5
https://dx.doi.org/10.1002/prot.21945
https://dx.doi.org/10.1002/prot.21945
https://dx.doi.org/10.1002/prot.21945
https://dx.doi.org/10.1002/prot.23175
https://dx.doi.org/10.1002/prot.23175
https://dx.doi.org/10.1093/bioinformatics/btr350
https://dx.doi.org/10.1093/bioinformatics/btr350
https://dx.doi.org/10.1093/bioinformatics/btr350
https://dx.doi.org/10.1093/bioinformatics/btr350
https://dx.doi.org/10.1002/prot.20308
https://dx.doi.org/10.1002/prot.20308
https://dx.doi.org/10.1002/prot.20308
https://dx.doi.org/10.1093/bioinformatics/btm377
https://dx.doi.org/10.1093/bioinformatics/btm377
https://dx.doi.org/10.1093/bioinformatics/btm377
https://dx.doi.org/10.1016/j.sbi.2005.05.011
https://dx.doi.org/10.1016/j.sbi.2005.05.011
https://dx.doi.org/10.1016/j.ces.2005.04.009
https://dx.doi.org/10.1016/j.ces.2005.04.009
https://dx.doi.org/10.1110/ps.04888805
https://dx.doi.org/10.1110/ps.04888805
https://dx.doi.org/10.1093/nar/gkm251
https://dx.doi.org/10.1093/nar/gkm251
https://dx.doi.org/10.1093/bioinformatics/btq058
https://dx.doi.org/10.1093/bioinformatics/btq058
https://dx.doi.org/10.1093/bioinformatics/btq058
https://dx.doi.org/10.1002/prot.24452
https://dx.doi.org/10.1002/prot.24452
https://dx.doi.org/10.1002/prot.25407
https://dx.doi.org/10.1002/prot.25407
https://dx.doi.org/10.1002/0471250953.bi0506s47
https://dx.doi.org/10.1002/0471250953.bi0506s47
https://dx.doi.org/10.1021/acs.jctc.8b00690
https://dx.doi.org/10.1021/acs.jctc.8b00690
https://dx.doi.org/10.1021/acs.jctc.8b00690
https://dx.doi.org/10.1093/nar/gki524
https://dx.doi.org/10.1093/nar/gki524
https://dx.doi.org/10.1186/1472-6807-13-2
https://dx.doi.org/10.1186/1472-6807-13-2
https://dx.doi.org/10.1186/1471-2105-9-40
https://dx.doi.org/10.1002/prot.24347
https://dx.doi.org/10.1002/prot.24347
https://dx.doi.org/10.1038/nprot.2008.184
https://dx.doi.org/10.1038/nprot.2008.184
https://dx.doi.org/10.1038/nprot.2008.184
https://dx.doi.org/10.1093/bioinformatics/btr538
https://dx.doi.org/10.1093/bioinformatics/btr538
https://dx.doi.org/10.1016/j.bpj.2011.10.024
https://dx.doi.org/10.1016/j.bpj.2011.10.024
https://dx.doi.org/10.1016/j.bpj.2011.10.024
https://dx.doi.org/10.1093/nar/gkw336
https://dx.doi.org/10.1093/nar/gkw336
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00825?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(48) Cheng, J. A multi-template combination algorithm for protein
comparative modeling. BMC Struct. Biol. 2008, 8, 18.

(49) Wallner, B; Larsson, P.; Elofsson, A. Pcons. net: protein
structure prediction meta server. Nucleic Acids Res. 2007, 35, W369—
W374.

(50) Haas, J.; Barbato, A.; Behringer, D; Studer, G; Roth, S;
Bertoni, M.; Mostaguir, K.; Gumienny, R.; Schwede, T. Continuous
Automated Model EvaluatiOn (CAMEOQ) complementing the critical
assessment of structure prediction in CASP12. Proteins: Struct.,, Funct,
Bioinf. 2018, 86, 387—398.

(51) Khosa, S.; Frieg, B.; Mulnaes, D.; Kleinschrodt, D.; Hoeppner,
A.; Gohlke, H.; Smits, S. H. Structural basis of lantibiotic recognition
by the nisin resistance protein from Streptococcus agalactiae. Sci. Rep.
2016, 6, 18679.

(52) Ghent, A. W. A method for exact testing of 2X2, 2X3, 3X3, and
other contingency tables, employing binomial coefficients. Am. Midl.
Nat. 1972, 88, 15—27. ]

(53) Zemla, A.; Venclovas, C.; Moult, J.; Fidelis, K. Processing and
analysis of CASP3 protein structure predictions. Proteins: Struct,
Funct., Bioinf. 1999, 37, 22—29.

(54) Soding, J.; Biegert, A.; Lupas, A. N. The HHpred interactive
server for protein homology detection and structure prediction.
Nucleic Acids Res. 2005, 33, W244—W248.

(55) Mariani, V.; Biasini, M.; Barbato, A.; Schwede, T. IDDT: a local
superposition-free score for comparing protein structures and models
using distance difference tests. Bioinformatics 2013, 29, 2722—2728.

(56) Mcguffin, L. J.; Bryson, K; Jones, D. T. The PSIPRED protein
structure prediction server. Bioinformatics 2000, 16, 404—405.

(57) Clemens, R.;; Zaschke-Kriesche, J.; Khosa, S.; Smits, S. H.
Insight into two ABC transporter families involved in lantibiotic
resistance. Front. Mol. Biosci. 2018, 4, 91.

(58) Kabsch, W.; Sander, C. Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geometrical
features. Biopolymers 1983, 22, 2577—2637.

(59) Zhang, W.; Yang, J; He, B; Walker, S. E; Zhang, H,;
Govindarajoo, B.; Virtanen, J; Xue, Z.; Shen, H.-B.; Zhang, Y.
Integration of QUARK and I-TASSER for Ab Initio Protein Structure
Prediction in CASP11. Proteins: Struct, Funct., Bioinf. 2016, 84, 76—
86.

(60) Schneidman-Duhovny, D.; Hammel, M.; Tainer, J. A; Sali, A.
Accurate SAXS profile computation and its assessment by contrast
variation experiments. Biophys. J. 2013, 105, 962—974.

(61) Schneidman-Duhovny, D.; Hammel, M.; Tainer, J. A; Sali, A.
FoXS, FoXSDock and MultiFoXS: Single-state and multi-state
structural modeling of proteins and their complexes based on SAXS
profiles. Nucleic Acids Res. 2016, 44, W424—W429.

(62) Svergun, D. L; Petoukhov, M. V.; Koch, M. H. J. Determination
of domain structure of proteins from X-ray solution scattering.
Biophys. J. 2001, 80, 2946—2953.

(63) Kozin, M. B.; Svergun, D. I. Automated matching of high- and
low-resolution structural models. J. Appl. Crystallogr. 2001, 34, 33—41.

(64) Delano, W. L. PyMOL, 2002.

(65) Milic, D.; Dick, M;; Mulnaes, D.; Pfleger, C.; Kinnen, A;
Gohlke, H.; Groth, G. Recognition motif and mechanism of ripening
inhibitory peptides in plant hormone receptor ETR1. Sci. Rep. 2018,
8, 3890.

(66) Zhang, Z.; Gu, Q; Vasudevan, A. a. J.; Hain, A; Kloke, B.-P;
Hasheminasab, S.; Mulnaes, D.; Sato, K.; Cichutek, K.; Haussinger, D.
Determinants of FIV and HIV Vif sensitivity of feline APOBEC3
restriction factors. Retrovirology 2016, 13, 46.

1967

https://dx.doi.org/10.1021/acs.jctc.9b00825
J. Chem. Theory Comput. 2020, 16, 1953—1967


https://dx.doi.org/10.1186/1472-6807-8-18
https://dx.doi.org/10.1186/1472-6807-8-18
https://dx.doi.org/10.1093/nar/gkm319
https://dx.doi.org/10.1093/nar/gkm319
https://dx.doi.org/10.1002/prot.25431
https://dx.doi.org/10.1002/prot.25431
https://dx.doi.org/10.1002/prot.25431
https://dx.doi.org/10.1038/srep18679
https://dx.doi.org/10.1038/srep18679
https://dx.doi.org/10.2307/2424485
https://dx.doi.org/10.2307/2424485
https://dx.doi.org/10.1002/(sici)1097-0134(1999)37:3+<22::aid-prot5>3.0.co;2-w
https://dx.doi.org/10.1002/(sici)1097-0134(1999)37:3+<22::aid-prot5>3.0.co;2-w
https://dx.doi.org/10.1093/nar/gki408
https://dx.doi.org/10.1093/nar/gki408
https://dx.doi.org/10.1093/bioinformatics/btt473
https://dx.doi.org/10.1093/bioinformatics/btt473
https://dx.doi.org/10.1093/bioinformatics/btt473
https://dx.doi.org/10.1093/bioinformatics/16.4.404
https://dx.doi.org/10.1093/bioinformatics/16.4.404
https://dx.doi.org/10.3389/fmolb.2017.00091
https://dx.doi.org/10.3389/fmolb.2017.00091
https://dx.doi.org/10.1002/bip.360221211
https://dx.doi.org/10.1002/bip.360221211
https://dx.doi.org/10.1002/bip.360221211
https://dx.doi.org/10.1002/prot.24930
https://dx.doi.org/10.1002/prot.24930
https://dx.doi.org/10.1016/j.bpj.2013.07.020
https://dx.doi.org/10.1016/j.bpj.2013.07.020
https://dx.doi.org/10.1093/nar/gkw389
https://dx.doi.org/10.1093/nar/gkw389
https://dx.doi.org/10.1093/nar/gkw389
https://dx.doi.org/10.1016/s0006-3495(01)76260-1
https://dx.doi.org/10.1016/s0006-3495(01)76260-1
https://dx.doi.org/10.1107/s0021889800014126
https://dx.doi.org/10.1107/s0021889800014126
https://dx.doi.org/10.1038/s41598-018-21952-3
https://dx.doi.org/10.1038/s41598-018-21952-3
https://dx.doi.org/10.1186/s12977-016-0274-9
https://dx.doi.org/10.1186/s12977-016-0274-9
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00825?ref=pdf

