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Bile Acid Receptors and Bile Acid Sensing Molecules

Bile acid (BA) effects are mediated through different types of BA receptors and
sensing molecules, which allow for a cell type- and BA-specific signaling (Fig. 1)
[1-5]. Nuclear BA receptors are ligand activated transcription factors and comprise
the farnesoid X receptor (FXR, NR1H4) [6—11], the pregnane X receptor (PXR,
NR112) [12, 13], and the vitamin D receptor (VDR, NR11I1) [14-16]. FXR is the
master regulator of BA homeostasis and is activated by the primary BA
chenodeoxycholic acid (CDCA) and its conjugates with an ECs( of approximately
5-20 pM [6, 8, 10, 11, 17, 18]. The secondary BAs deoxycholic acid (DCA) and
lithocholic acid (LCA) are also FXR ligands, however less efficient than CDCA
[8, 10, 17, 19]. In contrast, only the secondary BA LCA acts as ligand for PXR and
VDR [12, 13, 16].

Besides activation of intracellular nuclear receptors, BAs can modulate the
signaling of several G protein-coupled receptors (GPCRs) at the cell surface, such
as different types of muscarinic (acetylcholine) receptors (e.g., M2 and M3
receptors) [20-23] as well as formyl peptide receptors (FPR) [5, 24, 25]. Further-
more, taurine-conjugated BAs are ligands for the sphingosine-1-phosphate receptor
2 (S1PR2), which is expressed in liver parenchymal cells (hepatocytes) where it
regulates sterol and lipid metabolism as well as in cholangiocytes, where its activa-
tion triggers cell proliferation [26-31]. TGRS (Gpbarl, M-BAR) is a GPCR that
predominately couples to a stimulatory G protein and is activated by both conjugated
and unconjugated primary and secondary BAs [32-34].

Integrins (a5p1) also serve as BA sensing molecules in hepatocytes for taurine-
conjugated ursodeoxycholic acid (TUDCA) [35-37]. Uptake of BAs across the
plasma membrane is a prerequisite for BA-mediated a5p1 integrin activation since
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Fig. 1 Bile acid sensing molecules. Several BA responsive receptors and molecules have been
identified. Three nuclear receptors (NR) have been demonstrated to be activated by BAs: the
pregnane X receptor (PXR), the vitamin D receptor (VDR) and the farnesoid X receptor (FXR)
(purple boxes). Moreover, multiple G protein-coupled receptors (GPCRs) are either directly
activated or modulated in their activity by different BAs (blue boxes). While TGRS (Gpbar-1)
and the sphingosine-1-phosphate receptor 2 (SIPR2) are activated by various BAs, other GPCRs,
such as the formyl peptide receptor (FPR) and the muscarinic acetylcholine receptors M, and M3
can be inhibited in their signaling by BA. Furthermore, a5p1-integrins, chloride channels, and
several kinase pathways are activated by various bile acids (green boxes). Dashed arrows indicate
potentially indirect signaling, black arrows indicate a stimulatory effect, while inhibitory effects are
depicted in red. CDCA chenodeoxycholic acid, GCDCA glycochenodeoxycholic acid, TCA
taurocholic acid, TLCA taurolithocholic acid, TLCS taurolithocholylsulfate, LCA lithocholic
acid, DCA deoxycholic acid, TUDCA tauroursodeoxycholic acid. Modified after [1]

aSpl is found on intracellular endomembranes. Activation of aSp1 by TUDCA
results in increased bile secretion (choleresis), cell proliferation, and also protects the
cells from death receptor-mediated apoptosis [35-37].

Further BA sensors include ion channels and kinase signaling pathways; how-
ever, the precise mechanism by which BAs modulate these signaling molecules
remains elusive [1, 38-43].

The presence of various nuclear and plasma membrane-bound receptors for BAs
not only allow for a cell type- and BA-specific signaling but also help to explain the
pleiotropic effects of BAs in the organism.

TGR5, a G Protein-Coupled Receptor for Bile Acids

TGRS was discovered and characterized as a G protein-coupled receptor for both
primary and secondary BAs by Maruyama et al. in 2002 and Kawamata et al. in 2003
[32, 33].
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The gene encoding human TGRS is located in the chromosomal region 2q35 and
consists of two exons [44]. The coding region is entirely located in exon
2, encompasses 993 base pairs (bp), and translates into 330 amino acids
[33, 44]. The coding regions of rat and mouse Tgr5 contain 990 bp and encode for
329 amino acids each. There is a high sequence conservation between human,
bovine, rabbit, rat, and mouse TGR5 with amino acid identities ranging from 82 to
91% [32, 33]. TGRS belongs to the class A of GPCRs (rthodopsin-like GPCRs) and
shows the highest amino acid identity to different sphingosine-1-phosphate receptors
(S1PR) [32, 33], which is below 30%, however.

TGR5-Dependent Intracellular Signaling Pathways

Heterotrimeric G proteins are formed from an a-subunit, which binds and hydrolyses
guanosine triphosphate (GTP), and a complex of a - and a y-subunit [45—47]. Four
different classes of a-subunits are distinguished: Go promotes activation of
adenylate cyclase, Ga, leads to inhibition of adenylate cyclase, Gog; triggers
activation of phospholipase Cf, and Go,/13 are associated with stimulation of Rho
guanine-nucleotide exchange factors (GEFs) [45—47]. BA binding to TGRS leads to
an activation of the receptor and association with a G protein consisting of the
GDP-bound a-subunit and a Py-complex [45]. Following the interaction of the
GPCR with the G protein, GDP is released and replaced by GTP, which in turn
triggers a conformational change of the a-subunit and the subsequent dissociation of
the a-subunit from the Py-complex [45]. Further downstream signaling is then
initiated by the a-subunit and the By-complex, respectively [45]. In most cell types
studied to date, TGRS will associate with a Go/py heterotrimer and thus trigger the
activation of adenylate cyclase resulting in an elevation of intracellular cyclic AMP
(cAMP) levels [32, 33]. Downstream signaling activated by TGR5 comprise protein
kinase A (PKA)-, protein kinase B (AKT)-, mammalian target of rapamycin com-
plex 1 (mTORC1)- and extracellular-signal regulated kinase (ERK)-pathways
[32, 48-52]. Furthermore, stimulation of TGRS results in inhibition of nuclear factor
kappa B (NFkB) signaling, elevation of intracellular calcium levels, and activation
of different ion channels and modification of gene expression [48, 50, 53—60].
Similar to the SIPR2, TGRS can couple to different G proteins [27, 32, 33, 49,
61]. It was demonstrated that the receptor can couple to both Gay as well as to an
inhibitory G alpha protein (Go) in biliary epithelial cells depending on the subcel-
lular localization of TGRS [49]. TGRS located in the primary cilia of cholangiocytes
coupled to Goy; and attenuated cell proliferation, while TGRS located on the apical
plasma membrane associated with a Ga, protein upon ligand binding and triggered
cell proliferation [49]. In the FLO cell line, which is derived from human esophageal
Barrett’s adenocarcinoma, co-immunoprecipitation experiments demonstrated that
TGRS could interact with both Go, and Gays; however, signal transduction after
ligand binding was mediated only by Gay [61]. Thus, cell type and subcellular
localization seem to determine the interaction of TGRS with a specific G alpha
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protein. Whether posttranslational modifications also contribute to the G alpha
protein subclass selectivity of TGRS is unknown.

TGR5 Ligand Binding and Selectivity

TGRS recognizes a wide spectrum of ligands, ranging from BAs and neurosteroids
as natural TGRS agonists to synthetic BAs and agonists with a nonsteroidal core
(Fig. 2) [34, 62]. Particularly, several nonsteroidal intestine-specific TGRS agonists
are known [63, 64]. The specificity is achieved by the presence of quaternary
ammonium groups or by a considerable ligand size; for the latter, two TGRS agonists
are coupled via a linker region (15¢ in Fig. 2). In contrast to other BA receptors,
TGRS is activated by all known BAs, regardless of their substitution pattern and
state of conjugation (un-, taurine- or glycine-conjugated), although with varying
levels of potency ranging from 0.29 to 36.7 pM [34]. Generally, the agonistic
potential of BAs toward TGRS increases with the hydrophobicity of the cholane
scaffold. The most potent natural agonist of TGRS with an ECs of 0.29 pM is the
secondary BA taurolithocholic acid (TLCA), which is hydroxylated in position 3 of
the cholane scaffold only (Fig. 2). Additional hydroxylation of position 12 in the
secondary BA deoxycholic acid (DCA) or position 7 in the primary BA
chenodeoxycholic acid (CDCA) increases the ECs, 4-fold and 23-fold compared
to TLCA, respectively (Fig. 2). The stereochemical configuration of the hydroxyl
group in position 7 of the cholane scaffold has a large impact on TGRS activation:
The epimers CDCA and ursodeoxycholic acid (UDCA) show a fivefold difference in
their efficacy as TGRS agonists, with CDCA being more potent. This epimeric
selectivity has been explained by a hydrogen bond formation of CDCA’s 7-
a-hydroxyl group to Y89 in transmembrane helix 3 (TM3) of TGRS (Fig. 3a)
[65]. In contrast, due to the p-configuration, UDCA cannot form such a hydrogen
bond with its 7-hydroxyl group (Fig. 3b).

The BAs’ conjugation is another factor influencing their efficacy toward TGRS.
BAs with a free acid moiety and the respective glycine-conjugated derivatives
generally exhibit a similar potency, as seen in lithocholic acid (LCA; ECs,
0.58 uM) and glycolithocholic acid (GLCA; ECsy 0.54 pM). However, taurine-
conjugated derivatives are more potent than their related BAs, e.g., TLCA with an
ECso of 0.29 pM compared to LCA. Taurine conjugation increases the size of a BA
more than glycine conjugation, which allows the bridging of the residues R79 (EL1)
and Y240 (TM 6) in TGRS (Fig. 3c). The salt-bridge interaction between the
negatively charged sulfonic acid moiety and the positively charged R79 likely
increases the affinity of those BAs toward TGRS [65]. All BAs employ the
3-hydroxyl groups of their cholane scaffold to form a hydrogen bond to Y240, and
this interaction is further stabilized by a hydrogen bond to E169 (TMS5) (Fig. 3b).
The interaction with Y240 is crucial for the activation of TGRS, as mutation of this
residue to alanine or phenylalanine abrogates TGRS signaling [65]. Agonistic
neurosteroids such as pregnanediol (Fig. 2) also utilize their hydroxyl or carbonyl
groups to interact with Y240 in TGRS. Lacking acidic groups, they mainly form
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Fig. 2 Bile acid agonists and their ECs, values toward TGRS as reported in Ref. [34, 63]. Primary
bile acids: CDCA and UDCA. Secondary bile acids: DCA, LCA, GLC, and TLC. Intestine-specific
nonsteroidal TGRS5-specific agonists 26a from Ref. [63] and 15¢ from Ref. [64]. The primary bile
acids are generally less effective TGRS agonists than the secondary bile acids. The configuration of
the hydroxyl group in position seven (if present) strongly influences the activity: The
a-configuration as present in CDCA is more favorable than the p-configuration in UDCA. Conju-
gation of the acid moiety with glycine increases the activity toward TGRS only slightly, while
taurine conjugation increases the activity markedly
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Fig. 3 Binding modes of bile acids and neurosteroids as reported in Ref. [65]. (a) Binding mode of
CDCA in TGRS. CDCA forms a hydrogen bond to E169 in TM5 (yellow dotted line) and a weak
hydrogen bond to Y240 in TM6. Additionally, the 7a-hydroxyl group of CDCA forms a hydrogen
bond to Y89 in TM3 (yellow dotted line), and a salt bridge with R79 (yellow dotted line). (b)
Binding mode of UDCA in TGRS5. UDCA forms a hydrogen bond to E169 in TM5 (yellow dotted
line) and a weak hydrogen bond to Y240 in TM6. Unlike CDCA, UDCA is unable to form a
hydrogen bond to Y89 due to the p-configuration of its 7-hydroxyl group, resulting in a lower
efficacy compared to CDCA. (¢) Binding mode of TLC in TGR5. TLC forms hydrogen bonds to
E169 in TMS5 and to Y240 in TM6 (yellow dotted lines). With its sulfonic acid moiety, it forms a
salt bridge to R79 (yellow dotted lines). These interactions may explain why TLC is the most potent
natural bile acid toward TGRS. (d) Binding mode of pregnanediol in TGRS. Pregnanediol forms
hydrogen bonds to E169 in TMS5 and to Y240 in TM6 (yellow dotted line). Lacking an acid group, it
mainly forms hydrophobic contacts with Y89 in TM3

additional hydrophobic contacts with Y89 in TM3 to bind to and activate TGRS
(Fig. 3d) at a reasonable ECs [e.g., pregnanediol (Figs. 2 and 3d), ECsq 0.58 pM],
allowing them to activate TGRS in the brain [34, 54].

TGRS5-specific agonists with a nonsteroidal core mimic BAs through the presence
of an acid or amide moiety, which is linked to a system of three to four variably
interconnected aromatic and aliphatic rings. The ring furthest from the acid or amide
moiety always contains a heteroatom (e.g., 26a, 15¢ in Fig. 2). Although the binding
mode of nonsteroidal TGRS agonists is unknown, it is possible that the heteroatom is
necessary to form a hydrogen bond to Y240 (TM6), which is crucial for the
activation of TGRS. Finally, as TGRS binds ligands of various shapes and sizes, it
is surprising that to date no antagonist of TGRS is known. All the more because it is
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often easier to develop ligands that bind to GPCRs but do not activate them, as such
ligands do not need to bridge TMs 3 and 6 in a specific manner to induce the
movement of TM6 leading to GPCR activation [66].

TGR5 Tissue Distribution

TGRS mRNA was detected almost ubiquitously in human and rodent tissues [32, 67,
68]. In mice, the strongest signal for TGRS expression was detected in the gallblad-
der, followed by high expression levels in the spleen, lung, placenta as well as ileum
and colon [67, 68]. In human tissues, a similar expression pattern was found with
high TGRS mRNA levels in gallbladder, placenta, spleen, lung, liver, stomach, small
intestine, uterus, and mammary gland [32, 53, 69]. On the protein level, TGRS has
been detected in CD14-positive monocytes and tissue-resident macrophages in both
humans and rodents, in different nonparenchymal cells of the liver, in gallbladder
epithelial cells and gallbladder smooth muscle cells, in astrocytes, neurons and
microglia in the central as well as in astrocytes and neurons of the enteric and
peripheral nervous system [4, 48-50, 53—58, 70-73]. Furthermore, TGRS has been
localized in intestinal epithelial cells, enteroendocrine L-cells, in human kidney
proximal tubule cells and podocytes, in murine brown adipocytes, in human skeletal
muscle cells and in pancreatic p cells [56, 59, 74-79].

In rodent and human liver, TGRS is localized in sinusoidal endothelial cells
(LSEC), in liver resident macrophages (Kupffer cells, KC), and in cholangiocytes
[4, 52, 57, 58, 71, 80]. While quiescent hepatic stellate cells (HSC) do not express
TGRS, the receptor is upregulated during culture of isolated HSC and can also be
detected in activated, myofibroblast-like HSC in vivo [57, 81]. Using immunofluo-
rescence staining of rat and human liver cryosection, TGRS has not been detected in
hepatocytes, indicating that expression levels are much lower as compared to the
TGRS-expressing nonparenchymal liver cells [52, 57].

Regulation of TGR5 Expression, Localization, and Function

Very little is known on the regulation of TGRS expression, localization, and function
to date. An upregulation of TGRS mRNA has been observed in the frontal cortex of
mice following acute liver failure, which was induced by intraperitoneal injection of
azoxymethane [82]. In contrast, a downregulation of the receptor has been
demonstrated in isolated rat astrocytes following stimulation with ammonia
(NH4CIL; 0.5-5 mM, 72 h) both on the mRNA and protein level. In line with this
finding, reduced levels of TGRS mRNA were detected in cortical brain tissue from
patients with hepatic encephalopathy as compared to samples from control
subjects [54].

Stimulation of either rat astrocytes or human macrophages with the TGRS
agonistic progesterone metabolites 5p-pregnan-3a-ol-20-one or Sa-pregnan-
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3a-0l-20-one and Sa-pregnan-3p-ol-20-one triggered a significant downregulation
of TGR5 mRNA levels [54, 69].

Thus, downregulation of TGRS mRNA expression may represent a mechanism of
receptor desensitization in response to continuous stimulation [54, 69]. This may be
highly relevant since TGRS unlike many other GPCRs does not interact with
B-arrestins 1 and 2 or G protein-coupled receptor kinases 2, 5, or 6 and therefore
does not traffic from the plasma membrane to endosomes in response to activation
[83]. Ligand binding to TGRS in the plasma membrane induced a sustained cAMP
response, indicating that TGRS does not desensitize to repetitive stimulation [83].

TGR5 Functions in Liver in Health and Disease

Role of TGR5 for Bile Acid Homeostasis and Bile Secretion Under
Physiological and Cholestatic Conditions

Targeted deletion of TGRS in mice is not associated with an obvious phenotype or
the spontaneous development of liver disease [67, 68]. However, TGRS knockout
mice have a smaller BA pool size, despite unchanged expression levels of the rate-
limiting enzyme of BA synthesis Cyp7al and similar fecal excretion rates of BAs as
wild-type littermates [4, 5, 67, 72]. Bile acid pool composition is also altered in
absence of TGRS with a relative increase in taurocholic acid (TCA) and
taurodeoxycholic acid (TDCA) and a decrease of tauro-pf-muricholic acid
(TBPMCA), which may be attributed to lower Cyp7b1 expression [72, 84].

In cholangiocytes and gallbladder epithelial cells, TGRS is localized in the
primary cilia, which extend from the plasma membrane into the bile duct or
gallbladder lumen, as well as on the apical plasma membrane [49, 53, 71]. Ligand
binding to TGRS on biliary epithelial cells triggers elevation of intracellular cAMP,
which in turn promotes CFTR (ABCC7)-dependent chloride secretion [53, 80,
85]. Subsequently, chloride is exchanged across the apical plasma membrane against
bicarbonate by the anion exchanger 2 (AE2, SLC4A?2), thereby promoting formation
of a protective bicarbonate film/bicarbonate umbrella as well as bicarbonate-rich
biliary bile flow (choleresis) [53, 72, 80, 85—89]. Since not only transport activity but
also surface expression of CFTR and AE2 is regulated by cAMP, stimulation of
TGRS increases chloride and bicarbonate secretion directly and also indirectly
through enhanced insertion of CFTR and AE2 into the apical plasma membrane
from intracellular vesicles [53, 80, 85]. The bicarbonate umbrella together with the
glycocalix creates an alkaline microenvironment, which hampers the protonation of
hydrophobic glycine-conjugated BAs, inhibits diffusion of protonated apolar BAs
across the apical membrane of biliary epithelial cells and thus protects the cells from
BA toxicity [85, 87-90]. Therefore, it is not surprising that cholangiocytes from
TGRS knockout mice are more susceptible toward BA-induced cell damage
[52]. Besides maintenance of the bicarbonate umbrella, TGRS exerts antiapoptotic
effects in biliary epithelial cells via serine phosphorylation of the CD95 death
receptor [52]. Activation of TGRS also triggers cholangiocyte proliferation through
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elevation of reactive oxygen species, subsequent activation of Src kinase, matrix-
metalloproteinase-dependent shedding of epidermal growth factor (EGF),
transactivation of the epidermal growth factor receptor (EGFR), and subsequent
phosphorylation of mitogen-activated kinases (MAPK) ERK1/2 [52]. Cholangiocyte
proliferation in response to BA feeding (CA, LCA) or common bile duct ligation
(CBDL) is impaired in TGRS knockout mice in vivo [52]. Besides a reduced
cholangiocyte proliferative response, TGRS knockout mice are more susceptible
toward bile acid-mediated, cholestatic liver injury [52, 91, 92]. Cholic acid (0.5% for
7 days or 1% for 5 days) feeding and CBDL for up to 7 days resulted in a more
pronounced liver injury in the absence of TGRS as demonstrated by higher levels of
aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and/or more
pronounced liver cell necrosis on histology [52, 91, 92]. Livers from TGRS knock-
out mice not only displayed significantly decreased cholangiocyte but also signifi-
cantly reduced hepatocyte proliferation [52]. The mechanisms underlying reduced
hepatocyte proliferation in TGRS knockout mice remain elusive to date, since TGRS
protein levels are below the detection level in hepatocytes [57]. The impaired
proliferative response of hepatocytes in mice with targeted deletion of TGRS has
also been observed after partial hepatectomy (PHx) [91]. Following PHXx,
concentrations of hepatic BAs were elevated and biliary BA composition was
more hydrophobic in the absence of TGRS [91]. Treatment with the BA binding
resin cholestyramine (2%) alleviated liver injury in TGRS knockout mice,
suggesting that the higher hepatic BA levels as well as the altered composition of
the BA pool contribute to the observed phenotype [91, 92].

Gallbladder volume was decreased in TGRS knockout mice as compared to wild-
type animals both on chow as well as on BA (CA, 0.2%)-enriched diet [48, 72, 92],
which was attributed to reduced TGRS5-dependent biliary secretion but also to
impaired smooth muscle cell relaxation in the absence of TGRS [48, 72]. In contrast,
gallbladder size of wild-type mice increased up to 230% following administration of
different synthetic TGRS agonists (6a-ethyl-23(S)-methyl-cholic acid (INT-777), a
4-phenoxypyrimidine-5-carboxamide  derivative = (compound 18) or a
4-phenoxynicotinamide derivative (compound 23 g)) [72, 93, 94]. Although gall-
bladder hypomotility, as observed in TGRS knockout mice, is associated with
increased risk of cholesterol gallstone formation [72, 95], mice with targeted deletion
of TGRS did not develop cholesterol gallstones when fed a lithogenic diet [68].

Immunomodulatory and Metabolic Functions of TGR5 in Liver

In macrophages, stimulation of TGRS suppresses inflammatory cytokine and che-
mokine expression and secretion, inhibits phagocytosis and migration and induces
an anti-inflammatory macrophage phenotype, characterized by maintained expres-
sion of interleukin (IL) 10 despite downregulation of pro-inflammatory cytokines
[50, 55, 57, 96-99]. The mechanism underlying reduced inflammatory cytokine
expression comprises TGR5-dependent elevation of cAMP and subsequent inhibi-
tion of I kappa B kinase (IKK), which in turn prevents phosphorylation of the
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inhibitor of nuclear factor-kB (IkB) and thus hampers the nuclear translocation of
NF-xB-p65 resulting in reduced transcriptional activity of NF-kB [55, 100]. The
signaling pathway resulting in decreased chemokine secretion is dependent on an
AKT-mediated activation of the mTOR complex-1 (mTORC-1), which increases the
relative expression and protein levels of the dominant-negative CCAAT/enhancer
binding protein f (C/EBPP) isoform liver inhibitory protein (LIP) thereby
suppressing expression of chemokines such as Ccl2, Ccl3, and Ccl4 [50, 100].

In vivo, intraperitoneal injection of lipopolysaccharide (LPS) resulted in a more
severe phenotype as well as liver injury in TGRS knockout mice as compared to
wild-type animals, which was characterized by significantly increased mortality
(Reich, Hiaussinger, Keitel unpublished), elevated levels for alanine (ALT) and
aspartate (AST) aminotransferases, enhanced inflammatory infiltrates in liver tissue,
and increased hepatocyte apoptosis [97]. TGRS knockout mice were also more
susceptible to infection with Listeria monocytogenes (8 x 10* CFU/ml) as
demonstrated by a significantly higher mortality rate, increased listeria titers in
liver and spleen as well as a more aggravated liver inflammation and damage
(Reich, Héussinger, Keitel, unpublished) (Fig. 4).

Activation of TGRS has been shown not only to exert anti-inflammatory effects in
liver and adipose tissue but also to improve various aspects of the metabolic
syndrome, such as obesity, insulin resistance, and atherosclerosis [5, 55, 56,
59]. Treatment of wild-type mice fed a high fat diet (HFD) with the TGRS agonist
INT-777 attenuated obesity, reduced fat mass, and improved glucose tolerance
through increased intestinal glucagon-like peptide-1 (GLP-1) secretion [56]. Further-
more, administration of INT-777 lowered liver fatty acid and triglyceride
concentrations resulting in decreased hepatic steatosis and improved serum ALT
and AST levels as compared to the HFD-fed control animals [56]. The beneficial
effects of TGRS agonist on steatohepatitis may be attributed to reduced hepatic and
adipose tissue inflammation, to an increase in TGR5-mediated energy expenditure
and an improved insulin sensitivity due to enhanced intestinal GLP-1 secretion
[50, 56, 59, 100]. Whether direct effects of TGRS agonists on hepatocytes also
contribute to the attenuation or improvement of steatohepatitis in mice on HFD or
obese mice remains unknown. Treatment of obese db/db mice with a dual
FXR/TGRS agonist (6a-ethyl-24-nor-5p-cholane-3a,7a,23-trio-23-sulfate sodium
salt, INT-767) for 6 weeks increased the proportion of intrahepatic Ly6C'*" anti-
inflammatory macrophages and ameliorated steatohepatitis as assessed by histology
[101]. This is in line with results from human macrophages, where bile acid
treatment in a TGRS5-dependent way promoted the differentiation of an anti-
inflammatory macrophage phenotype, characterized by an increased IL10/IL12
ratio [96].
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Fig. 4 TGRS5-dependent bile acid signaling. (a) In most cell types TGRS is associated with a
Gg-protein, therefore, ligand binding triggers and activation of adenylate cyclase inducing an
increase of the ATP-dependent cAMP production and an activation of the protein kinase A
(PKA), which in turn may trigger several different signaling pathways. (b) Furthermore, interaction
of TGRS with G;-proteins inhibiting adenylate cyclase activity has been demonstrated for ciliated
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Role of TGR5 in Sinusoidal Endothelial Cells and Hepatic Stellate
Cells

Liver sinusoidal endothelial cells (LSEC) are exposed to varying concentrations of
nutrients, including BAs. After food intake, BA levels rise in portal venous blood
and reach concentrations between 14 and 43 pM [1, 102-104]. Ligand binding to
TGRS on LSEC triggered not only increased expression of endothelial NO synthase
(eNOS) but also stimulated phosphorylation of eNOS at serine 1177 via activation of
protein kinase A (PKA), resulting in increased NO production in rat liver slices
[58]. Similar results were obtained after TLCA treatment of endothelial cells from
bovine aorta or human umbilical vein [105]. Furthermore, TLCA inhibited
LPS-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) and
subsequent monocyte [105]. LSEC are an important NO donor in the hepatic
sinusoids. Decreased NO production in LSEC is one hallmark of portal hypertension
[1, 106-109]. Thus, stimulation of TGRS and activation of the cAMP-PKA-eNOS-
NO downstream signaling pathway may be beneficial in portal hypertension
[1, 4]. In carbon tetrachloride treated mice simultaneous administration of a TGRS
agonist (6p-ethyl-3a,7p-dihydroxy-5p-cholan-24-0l (BARS501) 15 mg/kg/day) did
not protect the animals from development of liver fibrosis, however inhibited the
development of endothelial dysfunction and portal hypertension [110]. This benefi-
cial effect was associated with reduced expression of endothelin-1 and increased
expression of cystathionine-y-lyase (CSE), an enzyme responsible for the generation
of the vasodilatory agent hydrogen sulfide [110].

TGRS5 mRNA expression was below the detection level in freshly isolated HSC
but increased significantly within days in culture [57, 81]. In activated,
myofibroblast-like HSC elevation of cAMP led to an internalization of the
endothelin-A (ET-A) receptor thereby attenuating the contractile response of the
cells toward endothelin-1 [111]. Stimulation of TGRS on activated HSC may trigger
cAMP-mediated ET-A receptor desensitization and thereby contribute to reduced
portal pressure.

While activation of the TGR5-cAMP-PKA-eNOS-NO signaling pathway in
LSEC may allow for adaption of sinusoidal blood flow in response to nutrient intake
thereby promoting hepatic metabolism under physiological conditions, stimulation
of TGRS on LSEC and activated HSC may attenuate portal hypertension develop-
ment after liver damage [1].

Fig. 4 (continued) cholangiocytes, where activation of TGRS inhibited cell proliferation [49]. (c)
Coupling of TGRS with G4-proteins has been observed in the oesophageal adenocarcinoma cell line
(FLO) and triggered expression of NADPH oxidase NOX-5 and cell proliferation [61]. G4-proteins
may signal through activation of phospholipase C which in turn triggers the synthesis of
diacylglyerol (DAG) and inositol trisphosphate (IP3). By induction of proteinkinase C (PKC)
activity and release of intracellular Ca, from the endoplasmatic reticulum (ER) these two second
messenger proteins are causing the phosphorylation of different target proteins. (d) TGRS-
dependent signaling in cholangiocytes. Modified after [52]
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TGR5 in Human Liver Disease

In contrast to mice little is known on the role of TGRS for the pathogenesis of human
liver diseases [92]. In line with the high expression of TGRS in cholangiocytes,
TGRS expression, localization, and function have been studied in biliary diseases.
TGRS protein levels as measured by relative quantification of TGRS immunofluo-
rescence staining in relation to cytokeratin 7 staining were significantly higher in
human cholangiocarcinoma (CCA) tissue as compared to cholangiocytes from the
nontumorous resection margins [52, 85]. Using CCA-derived cell lines (EGI-1 and
TFK-1), it was demonstrated that activation of TGRS triggers cell proliferation using
the same ROS-cSrc-MMP-EGFR-ERK1/2 signaling pathway as in cultured murine
cholangiocytes [52]. Furthermore, TGRS stimulation induced apoptosis resistance
and promoted cell migration and invasiveness. Thus, the receptor may contribute to
CCA progression.

An overexpression of TGRS has also been described in cystic cholangiocytes of
polycystic liver disease (PLD) [112]. Stimulation of TGRS in rodent cystic
cholangiocytes promotes a rise in intracellular cAMP, which triggers proliferation
and cyst growth, while deletion of TGRS in a rodent model of PLD attenuates cyst
formation [112].

In contrast to CCA- and PLD-derived biliary cells, which are characterized by
high TGRS expression levels, a reduction in TGRS immunofluorescence staining
intensity has been observed in cholangiocytes of livers from patients with primary
sclerosing cholangitis (PSC) as well as in livers from Abcb4 (Mdr2) knockout mice,
which serve as an animal model for PSC [52, 85, 92, 112]. The mechanisms as well
as the timing (early or late) of the TGRS downregulation in the disease course of PSC
is yet unclear [85, 92]; however, the reduced TGR5 expression may render
cholangiocytes more susceptible toward BA-mediated cytotoxicity and thus acceler-
ate disease progression [92].

Conclusion

Bile acids are signaling molecules with pleiotropic endocrine and paracrine
functions which are mediated by multiple BA sensing molecules, thus enabling a
BA- and cell type-specific response. BAs regulate bile acid, glucose, lipid and
energy homeostasis, modulate the immune response and affect cell survival and
cell proliferation. Therefore, BAs and BA sensors have emerged as attractive targets
for the treatment of metabolic diseases such as steatohepatitis, obesity, diabetes, and
atherosclerosis. TGRS (Gpbarl, M-Bar) is a G protein-coupled receptor highly
responsive to primary and secondary bile acids as well as to various progesterone
metabolites. The receptor is almost ubiquitously expressed and has been detected in
tissues participating in bile acid synthesis and secretion such as liver, intestine, and
kidney. However, TGRS is also found in placenta, adrenal glands, and brain, where
the receptor may primarily serve as membrane-bound receptor for steroid hormones.
In line with the broad tissue expression TGRS has numerous functions including
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modulation of the immune response, regulation of glucose and energy homeostasis
as well as intestinal motility. In liver, TGRS activation can modulate liver microcir-
culation, promote biliary secretion and proliferation of biliary epithelial cells, induce
gallbladder filling and exert anti-inflammatory effects. Targeted deletion of TGRS
renders mice more susceptible toward inflammatory as well as cholestatic liver
injury and impairs liver regeneration. In contrast, pharmacological stimulation of
TGRS improves steatohepatitis.

While TGRS is overexpressed in cholangiocarcinoma tissue and promotes apo-
ptosis resistance, cell proliferation, cell migration and invasiveness in CCA cell
lines, the receptor is downregulated in cholangiocytes of livers from patients with
progressive sclerosing cholangitis (PSC) as well as in livers from Mdr2 knockout
mice, which serve as an animal model for PSC. Further studies are needed to
elucidate the role of TGRS in human liver disease.
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