

Bile Acids and TGR5 (Gpbar1) Signaling

1

Verena Keitel, Christoph G. W. Gertzen, Sven Schäfer,
Caroline Klindt, Christina Wöhler, Kathleen Deutschmann,
Maria Reich, Holger Gohlke, and Dieter Häussinger

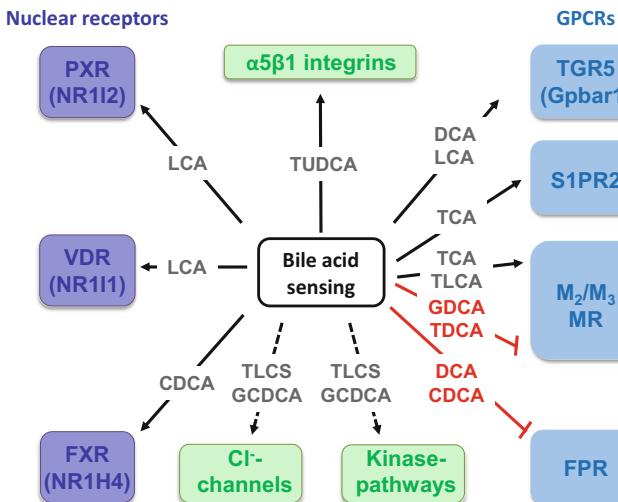
2

3

4

Bile Acid Receptors and Bile Acid Sensing Molecules

5


AU1

Bile acid (BA) effects are mediated through different types of BA receptors and sensing molecules, which allow for a cell type- and BA-specific signaling (Fig. 1) [1–5]. Nuclear BA receptors are ligand activated transcription factors and comprise the farnesoid X receptor (FXR, NR1H4) [6–11], the pregnane X receptor (PXR, NR1I2) [12, 13], and the vitamin D receptor (VDR, NR1I1) [14–16]. FXR is the master regulator of BA homeostasis and is activated by the primary BA chenodeoxycholic acid (CDCA) and its conjugates with an EC₅₀ of approximately 5–20 μM [6, 8, 10, 11, 17, 18]. The secondary BAs deoxycholic acid (DCA) and lithocholic acid (LCA) are also FXR ligands, however less efficient than CDCA [8, 10, 17, 19]. In contrast, only the secondary BA LCA acts as ligand for PXR and VDR [12, 13, 16].

Besides activation of intracellular nuclear receptors, BAs can modulate the signaling of several G protein-coupled receptors (GPCRs) at the cell surface, such as different types of muscarinic (acetylcholine) receptors (e.g., M₂ and M₃ receptors) [20–23] as well as formyl peptide receptors (FPR) [5, 24, 25]. Furthermore, taurine-conjugated BAs are ligands for the sphingosine-1-phosphate receptor 2 (S1PR2), which is expressed in liver parenchymal cells (hepatocytes) where it regulates sterol and lipid metabolism as well as in cholangiocytes, where its activation triggers cell proliferation [26–31]. TGR5 (Gpbar1, M-BAR) is a GPCR that predominately couples to a stimulatory G protein and is activated by both conjugated and unconjugated primary and secondary BAs [32–34].

Integrins (α₅β₁) also serve as BA sensing molecules in hepatocytes for taurine-conjugated ursodeoxycholic acid (TUDCA) [35–37]. Uptake of BAs across the plasma membrane is a prerequisite for BA-mediated α₅β₁ integrin activation since

V. Keitel (✉) · C. G. W. Gertzen · S. Schäfer · C. Klindt · C. Wöhler · K. Deutschmann · M. Reich · H. Gohlke · D. Häussinger
Düsseldorf, Germany
e-mail: verena.keitel@med.uni-duesseldorf.de

Fig. 1 Bile acid sensing molecules. Several BA responsive receptors and molecules have been identified. Three nuclear receptors (NR) have been demonstrated to be activated by BAs: the pregnane X receptor (PXR), the vitamin D receptor (VDR) and the farnesoid X receptor (FXR) (purple boxes). Moreover, multiple G protein-coupled receptors (GPCRs) are either directly activated or modulated in their activity by different BAs (blue boxes). While TGR5 (Gpbar-1) and the sphingosine-1-phosphate receptor 2 (S1PR2) are activated by various BAs, other GPCRs, such as the formyl peptide receptor (FPR) and the muscarinic acetylcholine receptors M_2 and M_3 can be inhibited in their signaling by BA. Furthermore, $\alpha 5\beta 1$ -integrins, chloride channels, and several kinase pathways are activated by various bile acids (green boxes). Dashed arrows indicate potentially indirect signaling, black arrows indicate a stimulatory effect, while inhibitory effects are depicted in red. CDCA chenodeoxycholic acid, GCDCA glycochenodeoxycholic acid, TCA taurocholic acid, TLCA taurolithocholic acid, TLCS taurolithocholylsulfate, LCA lithocholic acid, DCA deoxycholic acid, TUDCA taurooursodeoxycholic acid. Modified after [1]

30 $\alpha 5\beta 1$ is found on intracellular endomembranes. Activation of $\alpha 5\beta 1$ by TUDCA
 31 results in increased bile secretion (choleresis), cell proliferation, and also protects the
 32 cells from death receptor-mediated apoptosis [35–37].

33 Further BA sensors include ion channels and kinase signaling pathways; how-
 34 ever, the precise mechanism by which BAs modulate these signaling molecules
 35 remains elusive [1, 38–43].

36 The presence of various nuclear and plasma membrane-bound receptors for BAs
 37 not only allow for a cell type- and BA-specific signaling but also help to explain the
 38 pleiotropic effects of BAs in the organism.

39 **TGR5, a G Protein-Coupled Receptor for Bile Acids**

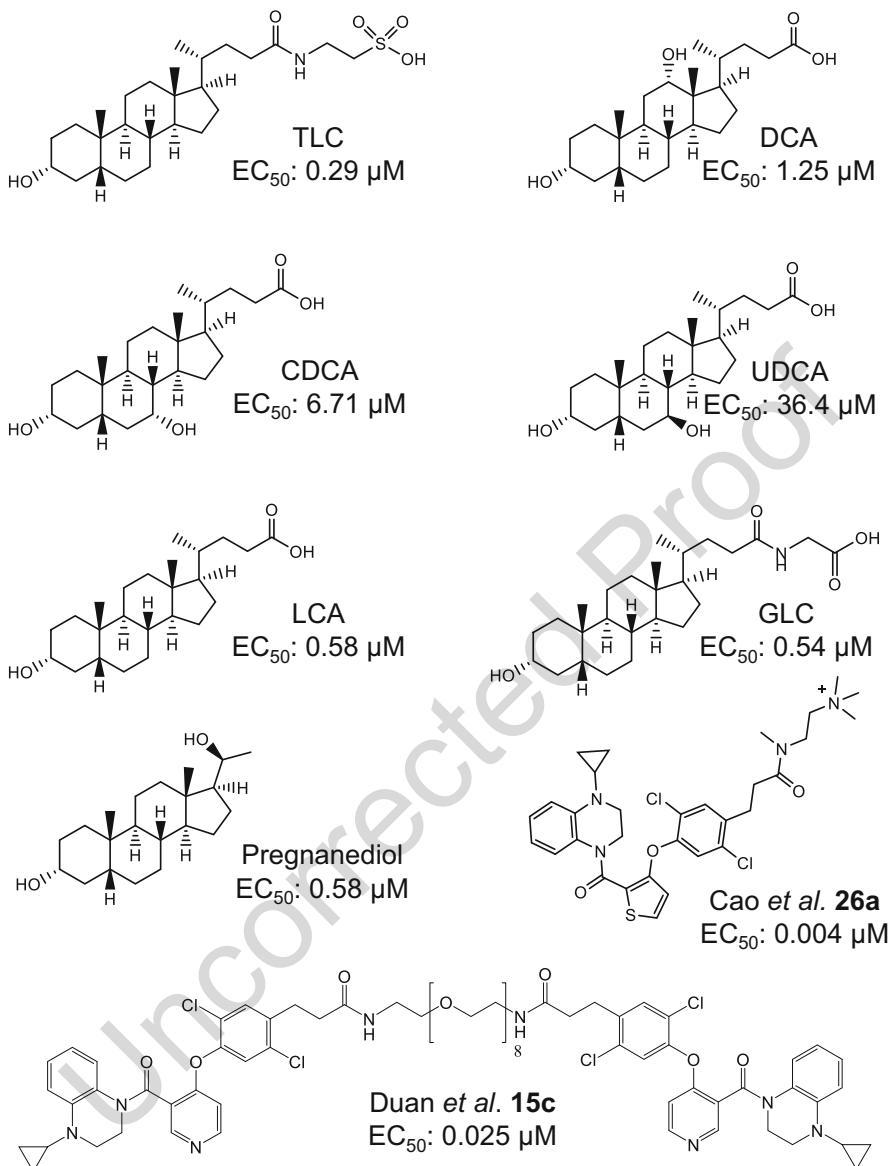
40 TGR5 was discovered and characterized as a G protein-coupled receptor for both
 41 primary and secondary BAs by Maruyama et al. in 2002 and Kawamata et al. in 2003
 42 [32, 33].

The gene encoding human TGR5 is located in the chromosomal region 2q35 and 43 consists of two exons [44]. The coding region is entirely located in exon 44 2, encompasses 993 base pairs (bp), and translates into 330 amino acids 45 [33, 44]. The coding regions of rat and mouse Tgr5 contain 990 bp and encode for 46 329 amino acids each. There is a high sequence conservation between human, 47 bovine, rabbit, rat, and mouse TGR5 with amino acid identities ranging from 82 to 48 91% [32, 33]. TGR5 belongs to the class A of GPCRs (rhodopsin-like GPCRs) and 49 shows the highest amino acid identity to different sphingosine-1-phosphate receptors 50 (S1PR) [32, 33], which is below 30%, however. 51

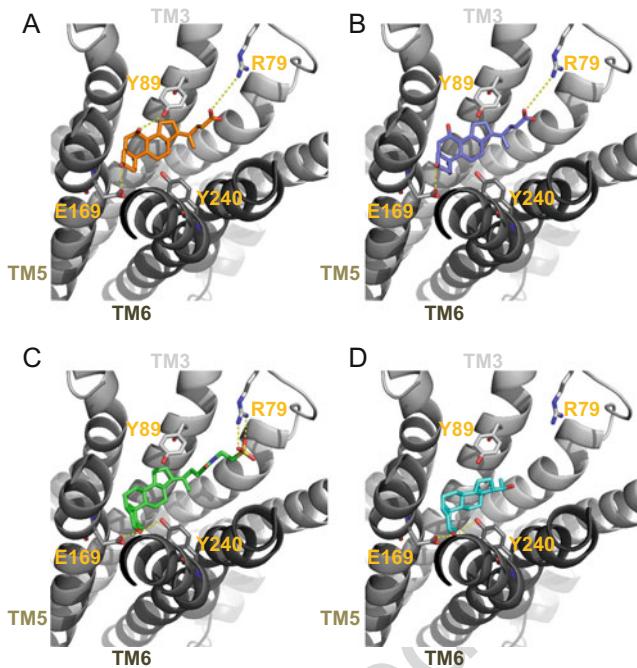
TGR5-Dependent Intracellular Signaling Pathways

52

Heterotrimeric G proteins are formed from an α -subunit, which binds and hydrolyses 53 guanosine triphosphate (GTP), and a complex of a β - and a γ -subunit [45–47]. Four 54 different classes of α -subunits are distinguished: $G\alpha_s$ promotes activation of 55 adenylate cyclase, $G\alpha_{i/o}$ leads to inhibition of adenylate cyclase, $G\alpha_{q/11}$ triggers 56 activation of phospholipase C β , and $G\alpha_{12/13}$ are associated with stimulation of Rho 57 guanine-nucleotide exchange factors (GEFs) [45–47]. BA binding to TGR5 leads to 58 an activation of the receptor and association with a G protein consisting of the 59 GDP-bound α -subunit and a $\beta\gamma$ -complex [45]. Following the interaction of the 60 GPCR with the G protein, GDP is released and replaced by GTP, which in turn 61 triggers a conformational change of the α -subunit and the subsequent dissociation of 62 the α -subunit from the $\beta\gamma$ -complex [45]. Further downstream signaling is then 63 initiated by the α -subunit and the $\beta\gamma$ -complex, respectively [45]. In most cell types 64 studied to date, TGR5 will associate with a $G\alpha_s/\beta\gamma$ heterotrimer and thus trigger the 65 activation of adenylate cyclase resulting in an elevation of intracellular cyclic AMP 66 (cAMP) levels [32, 33]. Downstream signaling activated by TGR5 comprise protein 67 kinase A (PKA)-, protein kinase B (AKT)-, mammalian target of rapamycin com- 68 plex 1 (mTORC1)- and extracellular-signal regulated kinase (ERK)-pathways 69 [32, 48–52]. Furthermore, stimulation of TGR5 results in inhibition of nuclear factor 70 kappa B (NF κ B) signaling, elevation of intracellular calcium levels, and activation 71 of different ion channels and modification of gene expression [48, 50, 53–60]. 72


Similar to the S1PR2, TGR5 can couple to different G proteins [27, 32, 33, 49, 73 61]. It was demonstrated that the receptor can couple to both $G\alpha_s$ as well as to an 74 inhibitory G alpha protein ($G\alpha_i$) in biliary epithelial cells depending on the subcel- 75 lular localization of TGR5 [49]. TGR5 located in the primary cilia of cholangiocytes 76 coupled to $G\alpha_i$ and attenuated cell proliferation, while TGR5 located on the apical 77 plasma membrane associated with a $G\alpha_s$ protein upon ligand binding and triggered 78 cell proliferation [49]. In the FLO cell line, which is derived from human esophageal 79 Barrett's adenocarcinoma, co-immunoprecipitation experiments demonstrated that 80 TGR5 could interact with both $G\alpha_q$ and $G\alpha_{i3}$; however, signal transduction after 81 ligand binding was mediated only by $G\alpha_q$ [61]. Thus, cell type and subcellular 82 localization seem to determine the interaction of TGR5 with a specific G alpha 83

protein. Whether posttranslational modifications also contribute to the G alpha protein subclass selectivity of TGR5 is unknown.


86 TGR5 Ligand Binding and Selectivity

87 TGR5 recognizes a wide spectrum of ligands, ranging from BAs and neurosteroids
88 as natural TGR5 agonists to synthetic BAs and agonists with a nonsteroidal core
89 (Fig. 2) [34, 62]. Particularly, several nonsteroidal intestine-specific TGR5 agonists
90 are known [63, 64]. The specificity is achieved by the presence of quaternary
91 ammonium groups or by a considerable ligand size; for the latter, two TGR5 agonists
92 are coupled via a linker region (15c in Fig. 2). In contrast to other BA receptors,
93 TGR5 is activated by all known BAs, regardless of their substitution pattern and
94 state of conjugation (un-, taurine- or glycine-conjugated), although with varying
95 levels of potency ranging from 0.29 to 36.7 μ M [34]. Generally, the agonistic
96 potential of BAs toward TGR5 increases with the hydrophobicity of the cholestanol
97 scaffold. The most potent natural agonist of TGR5 with an EC₅₀ of 0.29 μ M is the
98 secondary BA taurolithocholic acid (TLCA), which is hydroxylated in position 3 of
99 the cholestanol scaffold only (Fig. 2). Additional hydroxylation of position 12 in the
100 secondary BA deoxycholic acid (DCA) or position 7 in the primary BA
101 chenodeoxycholic acid (CDCA) increases the EC₅₀ 4-fold and 23-fold compared
102 to TLCA, respectively (Fig. 2). The stereochemical configuration of the hydroxyl
103 group in position 7 of the cholestanol scaffold has a large impact on TGR5 activation:
104 The epimers CDCA and ursodeoxycholic acid (UDCA) show a fivefold difference in
105 their efficacy as TGR5 agonists, with CDCA being more potent. This epimeric
106 selectivity has been explained by a hydrogen bond formation of CDCA's 7-
107 α -hydroxyl group to Y89 in transmembrane helix 3 (TM3) of TGR5 (Fig. 3a)
108 [65]. In contrast, due to the β -configuration, UDCA cannot form such a hydrogen
109 bond with its 7-hydroxyl group (Fig. 3b).

110 The BAs' conjugation is another factor influencing their efficacy toward TGR5.
111 BAs with a free acid moiety and the respective glycine-conjugated derivatives
112 generally exhibit a similar potency, as seen in lithocholic acid (LCA; EC₅₀
113 0.58 μ M) and glycolithocholic acid (GLCA; EC₅₀ 0.54 μ M). However, taurine-
114 conjugated derivatives are more potent than their related BAs, e.g., TLCA with an
115 EC₅₀ of 0.29 μ M compared to LCA. Taurine conjugation increases the size of a BA
116 more than glycine conjugation, which allows the bridging of the residues R79 (EL1)
117 and Y240 (TM 6) in TGR5 (Fig. 3c). The salt-bridge interaction between the
118 negatively charged sulfonic acid moiety and the positively charged R79 likely
119 increases the affinity of those BAs toward TGR5 [65]. All BAs employ the
120 3-hydroxyl groups of their cholestanol scaffold to form a hydrogen bond to Y240, and
121 this interaction is further stabilized by a hydrogen bond to E169 (TM5) (Fig. 3b).
122 The interaction with Y240 is crucial for the activation of TGR5, as mutation of this
123 residue to alanine or phenylalanine abrogates TGR5 signaling [65]. Agonistic
124 neurosteroids such as pregnanediol (Fig. 2) also utilize their hydroxyl or carbonyl
125 groups to interact with Y240 in TGR5. Lacking acidic groups, they mainly form

Fig. 2 Bile acids and their EC_{50} values toward TGR5 as reported in Ref. [34, 63]. Primary bile acids: CDCA and UDCA. Secondary bile acids: DCA, LCA, GLC, and TLC. Intestine-specific nonsteroidal TGR5-specific agonists **26a** from Ref. [63] and **15c** from Ref. [64]. The primary bile acids are generally less effective TGR5 agonists than the secondary bile acids. The configuration of the hydroxyl group in position seven (if present) strongly influences the activity: The α -configuration as present in CDCA is more favorable than the β -configuration in UDCA. Conjugation of the acid moiety with glycine increases the activity toward TGR5 only slightly, while taurine conjugation increases the activity markedly

Fig. 3 Binding modes of bile acids and neurosteroids as reported in Ref. [65]. (a) Binding mode of CDCA in TGR5. CDCA forms a hydrogen bond to E169 in TM5 (yellow dotted line) and a weak hydrogen bond to Y240 in TM6. Additionally, the 7 α -hydroxyl group of CDCA forms a hydrogen bond to Y89 in TM3 (yellow dotted line), and a salt bridge with R79 (yellow dotted line). (b) Binding mode of UDCA in TGR5. UDCA forms a hydrogen bond to E169 in TM5 (yellow dotted line) and a weak hydrogen bond to Y240 in TM6. Unlike CDCA, UDCA is unable to form a hydrogen bond to Y89 due to the β -configuration of its 7-hydroxyl group, resulting in a lower efficacy compared to CDCA. (c) Binding mode of TLC in TGR5. TLC forms hydrogen bonds to E169 in TM5 and to Y240 in TM6 (yellow dotted lines). With its sulfonic acid moiety, it forms a salt bridge to R79 (yellow dotted lines). These interactions may explain why TLC is the most potent natural bile acid toward TGR5. (d) Binding mode of pregnanediol in TGR5. Pregnanediol forms hydrogen bonds to E169 in TM5 and to Y240 in TM6 (yellow dotted line). Lacking an acid group, it mainly forms hydrophobic contacts with Y89 in TM3

126 additional hydrophobic contacts with Y89 in TM3 to bind to and activate TGR5
 127 (Fig. 3d) at a reasonable EC₅₀ [e.g., pregnanediol (Figs. 2 and 3d), EC₅₀ 0.58 μ M],
 128 allowing them to activate TGR5 in the brain [34, 54].

129 TGR5-specific agonists with a nonsteroidal core mimic BAs through the presence
 130 of an acid or amide moiety, which is linked to a system of three to four variably
 131 interconnected aromatic and aliphatic rings. The ring furthest from the acid or amide
 132 moiety always contains a heteroatom (e.g., 26a, 15c in Fig. 2). Although the binding
 133 mode of nonsteroidal TGR5 agonists is unknown, it is possible that the heteroatom is
 134 necessary to form a hydrogen bond to Y240 (TM6), which is crucial for the
 135 activation of TGR5. Finally, as TGR5 binds ligands of various shapes and sizes, it
 136 is surprising that to date no antagonist of TGR5 is known. All the more because it is

often easier to develop ligands that bind to GPCRs but do not activate them, as such ligands do not need to bridge TMs 3 and 6 in a specific manner to induce the movement of TM6 leading to GPCR activation [66]. 137
138
139

TGR5 Tissue Distribution

140

TGR5 mRNA was detected almost ubiquitously in human and rodent tissues [32, 67, 141
68]. In mice, the strongest signal for TGR5 expression was detected in the gallblad- 142
der, followed by high expression levels in the spleen, lung, placenta as well as ileum 143
and colon [67, 68]. In human tissues, a similar expression pattern was found with 144
high TGR5 mRNA levels in gallbladder, placenta, spleen, lung, liver, stomach, small 145
intestine, uterus, and mammary gland [32, 53, 69]. On the protein level, TGR5 has 146
been detected in CD14-positive monocytes and tissue-resident macrophages in both 147
humans and rodents, in different nonparenchymal cells of the liver, in gallbladder 148
epithelial cells and gallbladder smooth muscle cells, in astrocytes, neurons and 149
microglia in the central as well as in astrocytes and neurons of the enteric and 150
peripheral nervous system [4, 48–50, 53–58, 70–73]. Furthermore, TGR5 has been 151
localized in intestinal epithelial cells, enteroendocrine L-cells, in human kidney 152
proximal tubule cells and podocytes, in murine brown adipocytes, in human skeletal 153
muscle cells and in pancreatic β cells [56, 59, 74–79]. 154

In rodent and human liver, TGR5 is localized in sinusoidal endothelial cells 155
(LSEC), in liver resident macrophages (Kupffer cells, KC), and in cholangiocytes 156
[4, 52, 57, 58, 71, 80]. While quiescent hepatic stellate cells (HSC) do not express 157
TGR5, the receptor is upregulated during culture of isolated HSC and can also be 158
detected in activated, myofibroblast-like HSC in vivo [57, 81]. Using immunofluo- 159
rescence staining of rat and human liver cryosection, TGR5 has not been detected in 160
hepatocytes, indicating that expression levels are much lower as compared to the 161
TGR5-expressing nonparenchymal liver cells [52, 57]. 162

Regulation of TGR5 Expression, Localization, and Function

163

Very little is known on the regulation of TGR5 expression, localization, and function 164
to date. An upregulation of TGR5 mRNA has been observed in the frontal cortex of 165
mice following acute liver failure, which was induced by intraperitoneal injection of 166
azoxymethane [82]. In contrast, a downregulation of the receptor has been 167
demonstrated in isolated rat astrocytes following stimulation with ammonia 168
(NH₄Cl; 0.5–5 mM, 72 h) both on the mRNA and protein level. In line with this 169
finding, reduced levels of TGR5 mRNA were detected in cortical brain tissue from 170
patients with hepatic encephalopathy as compared to samples from control 171
subjects [54]. 172

Stimulation of either rat astrocytes or human macrophages with the TGR5 173
agonistic progesterone metabolites 5 β -pregnan-3 α -ol-20-one or 5 α -pregnan- 174

175 3 α -ol-20-one and 5 α -pregnan-3 β -ol-20-one triggered a significant downregulation
176 of TGR5 mRNA levels [54, 69].

177 Thus, downregulation of TGR5 mRNA expression may represent a mechanism of
178 receptor desensitization in response to continuous stimulation [54, 69]. This may be
179 highly relevant since TGR5 unlike many other GPCRs does not interact with
180 β -arrestins 1 and 2 or G protein-coupled receptor kinases 2, 5, or 6 and therefore
181 does not traffic from the plasma membrane to endosomes in response to activation
182 [83]. Ligand binding to TGR5 in the plasma membrane induced a sustained cAMP
183 response, indicating that TGR5 does not desensitize to repetitive stimulation [83].

184 **TGR5 Functions in Liver in Health and Disease**

185 **Role of TGR5 for Bile Acid Homeostasis and Bile Secretion Under** 186 **Physiological and Cholestatic Conditions**

187 Targeted deletion of TGR5 in mice is not associated with an obvious phenotype or
188 the spontaneous development of liver disease [67, 68]. However, TGR5 knockout
189 mice have a smaller BA pool size, despite unchanged expression levels of the rate-
190 limiting enzyme of BA synthesis Cyp7a1 and similar fecal excretion rates of BAs as
191 wild-type littermates [4, 5, 67, 72]. Bile acid pool composition is also altered in
192 absence of TGR5 with a relative increase in taurocholic acid (TCA) and
193 taurodeoxycholic acid (TDCA) and a decrease of tauro- β -muricholic acid
194 (T β MCA), which may be attributed to lower Cyp7b1 expression [72, 84].

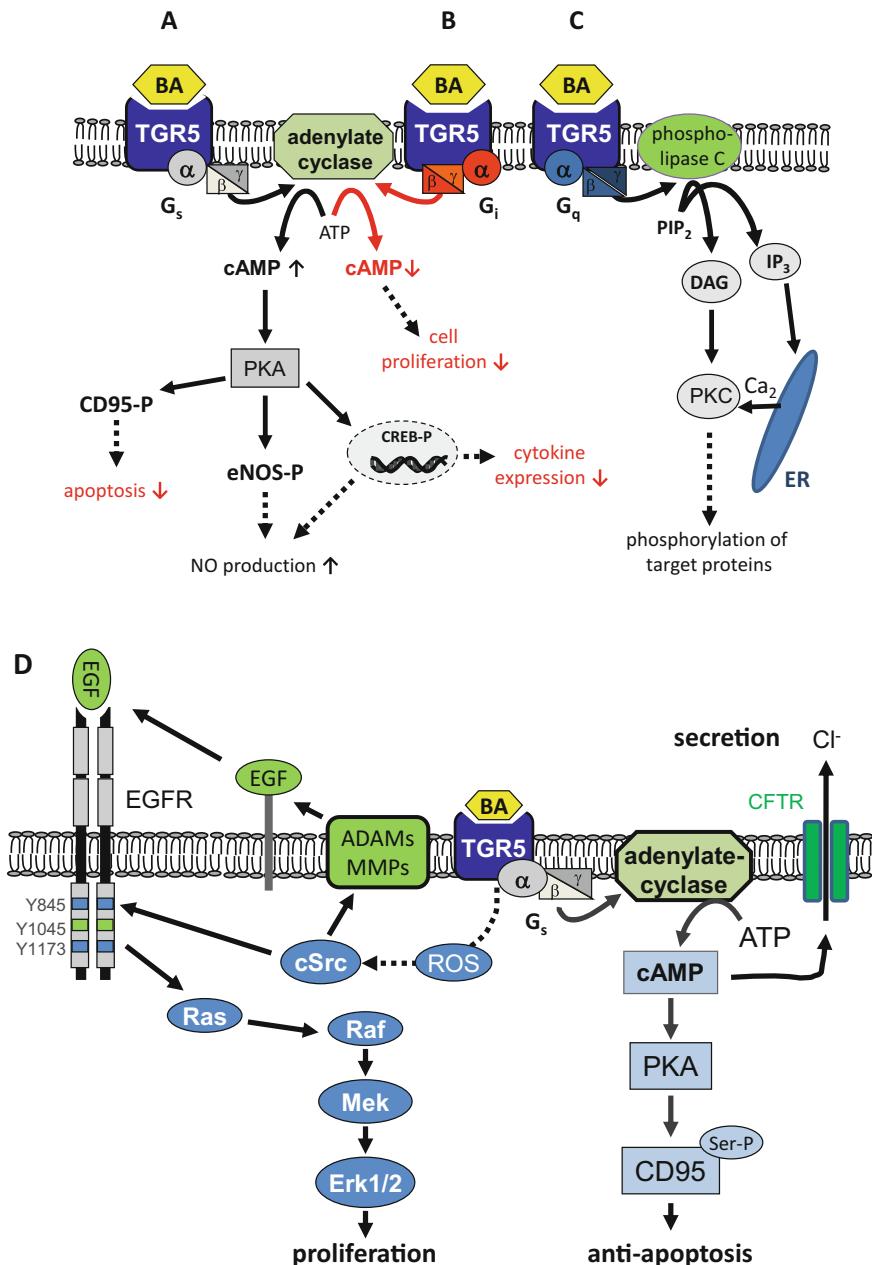
195 In cholangiocytes and gallbladder epithelial cells, TGR5 is localized in the
196 primary cilia, which extend from the plasma membrane into the bile duct or
197 gallbladder lumen, as well as on the apical plasma membrane [49, 53, 71]. Ligand
198 binding to TGR5 on biliary epithelial cells triggers elevation of intracellular cAMP,
199 which in turn promotes CFTR (ABCC7)-dependent chloride secretion [53, 80,
200 85]. Subsequently, chloride is exchanged across the apical plasma membrane against
201 bicarbonate by the anion exchanger 2 (AE2, SLC4A2), thereby promoting formation
202 of a protective bicarbonate film/bicarbonate umbrella as well as bicarbonate-rich
203 biliary bile flow (choleresis) [53, 72, 80, 85–89]. Since not only transport activity but
204 also surface expression of CFTR and AE2 is regulated by cAMP, stimulation of
205 TGR5 increases chloride and bicarbonate secretion directly and also indirectly
206 through enhanced insertion of CFTR and AE2 into the apical plasma membrane
207 from intracellular vesicles [53, 80, 85]. The bicarbonate umbrella together with the
208 glycocalix creates an alkaline microenvironment, which hampers the protonation of
209 hydrophobic glycine-conjugated BAs, inhibits diffusion of protonated apolar BAs
210 across the apical membrane of biliary epithelial cells and thus protects the cells from
211 BA toxicity [85, 87–90]. Therefore, it is not surprising that cholangiocytes from
212 TGR5 knockout mice are more susceptible toward BA-induced cell damage
213 [52]. Besides maintenance of the bicarbonate umbrella, TGR5 exerts antiapoptotic
214 effects in biliary epithelial cells via serine phosphorylation of the CD95 death
215 receptor [52]. Activation of TGR5 also triggers cholangiocyte proliferation through

elevation of reactive oxygen species, subsequent activation of Src kinase, matrix- 216 metalloproteinase-dependent shedding of epidermal growth factor (EGF), 217 transactivation of the epidermal growth factor receptor (EGFR), and subsequent 218 phosphorylation of mitogen-activated kinases (MAPK) ERK1/2 [52]. Cholangiocyte 219 proliferation in response to BA feeding (CA, LCA) or common bile duct ligation 220 (CBDL) is impaired in TGR5 knockout mice *in vivo* [52]. Besides a reduced 221 cholangiocyte proliferative response, TGR5 knockout mice are more susceptible 222 toward bile acid-mediated, cholestatic liver injury [52, 91, 92]. Cholic acid (0.5% for 223 7 days or 1% for 5 days) feeding and CBDL for up to 7 days resulted in a more 224 pronounced liver injury in the absence of TGR5 as demonstrated by higher levels of 225 aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and/or more 226 pronounced liver cell necrosis on histology [52, 91, 92]. Livers from TGR5 knock- 227 out mice not only displayed significantly decreased cholangiocyte but also signifi- 228 cantly reduced hepatocyte proliferation [52]. The mechanisms underlying reduced 229 hepatocyte proliferation in TGR5 knockout mice remain elusive to date, since TGR5 230 protein levels are below the detection level in hepatocytes [57]. The impaired 231 proliferative response of hepatocytes in mice with targeted deletion of TGR5 has 232 also been observed after partial hepatectomy (PHx) [91]. Following PHx, 233 concentrations of hepatic BAs were elevated and biliary BA composition was 234 more hydrophobic in the absence of TGR5 [91]. Treatment with the BA binding 235 resin cholestyramine (2%) alleviated liver injury in TGR5 knockout mice, 236 suggesting that the higher hepatic BA levels as well as the altered composition of 237 the BA pool contribute to the observed phenotype [91, 92]. 238

Gallbladder volume was decreased in TGR5 knockout mice as compared to wild- 239 type animals both on chow as well as on BA (CA, 0.2%)-enriched diet [48, 72, 92], 240 which was attributed to reduced TGR5-dependent biliary secretion but also to 241 impaired smooth muscle cell relaxation in the absence of TGR5 [48, 72]. In contrast, 242 gallbladder size of wild-type mice increased up to 230% following administration of 243 different synthetic TGR5 agonists (6 α -ethyl-23(S)-methyl-cholic acid (INT-777), a 244 4-phenoxyypyrimidine-5-carboxamide derivative (compound 18) or a 245 4-phenoxynicotinamide derivative (compound 23 g)) [72, 93, 94]. Although gall- 246 bladder hypomotility, as observed in TGR5 knockout mice, is associated with 247 increased risk of cholesterol gallstone formation [72, 95], mice with targeted deletion 248 of TGR5 did not develop cholesterol gallstones when fed a lithogenic diet [68]. 249

Immunomodulatory and Metabolic Functions of TGR5 in Liver

250


In macrophages, stimulation of TGR5 suppresses inflammatory cytokine and che- 251 mokine expression and secretion, inhibits phagocytosis and migration and induces 252 an anti-inflammatory macrophage phenotype, characterized by maintained expres- 253 sion of interleukin (IL) 10 despite downregulation of pro-inflammatory cytokines 254 [50, 55, 57, 96–99]. The mechanism underlying reduced inflammatory cytokine 255 expression comprises TGR5-dependent elevation of cAMP and subsequent inhibi- 256 tion of I kappa B kinase (IKK), which in turn prevents phosphorylation of the 257

inhibitor of nuclear factor- κ B (IkB) and thus hampers the nuclear translocation of NF- κ B-p65 resulting in reduced transcriptional activity of NF- κ B [55, 100]. The signaling pathway resulting in decreased chemokine secretion is dependent on an AKT-mediated activation of the mTOR complex-1 (mTORC-1), which increases the relative expression and protein levels of the dominant-negative CCAAT/enhancer binding protein β (C/EBP β) isoform liver inhibitory protein (LIP) thereby suppressing expression of chemokines such as Ccl2, Ccl3, and Ccl4 [50, 100].

In vivo, intraperitoneal injection of lipopolysaccharide (LPS) resulted in a more severe phenotype as well as liver injury in TGR5 knockout mice as compared to wild-type animals, which was characterized by significantly increased mortality (Reich, Häussinger, Keitel unpublished), elevated levels for alanine (ALT) and aspartate (AST) aminotransferases, enhanced inflammatory infiltrates in liver tissue, and increased hepatocyte apoptosis [97]. TGR5 knockout mice were also more susceptible to infection with *Listeria monocytogenes* (8×10^4 CFU/ml) as demonstrated by a significantly higher mortality rate, increased listeria titers in liver and spleen as well as a more aggravated liver inflammation and damage (Reich, Häussinger, Keitel, unpublished) (Fig. 4).

Activation of TGR5 has been shown not only to exert anti-inflammatory effects in liver and adipose tissue but also to improve various aspects of the metabolic syndrome, such as obesity, insulin resistance, and atherosclerosis [5, 55, 56, 59]. Treatment of wild-type mice fed a high fat diet (HFD) with the TGR5 agonist INT-777 attenuated obesity, reduced fat mass, and improved glucose tolerance through increased intestinal glucagon-like peptide-1 (GLP-1) secretion [56]. Furthermore, administration of INT-777 lowered liver fatty acid and triglyceride concentrations resulting in decreased hepatic steatosis and improved serum ALT and AST levels as compared to the HFD-fed control animals [56]. The beneficial effects of TGR5 agonist on steatohepatitis may be attributed to reduced hepatic and adipose tissue inflammation, to an increase in TGR5-mediated energy expenditure and an improved insulin sensitivity due to enhanced intestinal GLP-1 secretion [50, 56, 59, 100]. Whether direct effects of TGR5 agonists on hepatocytes also contribute to the attenuation or improvement of steatohepatitis in mice on HFD or obese mice remains unknown. Treatment of obese db/db mice with a dual FXR/TGR5 agonist (6 α -ethyl-24-nor-5 β -cholane-3 α ,7 α ,23-trio-23-sulfate sodium salt, INT-767) for 6 weeks increased the proportion of intrahepatic Ly6C $^{\text{low}}$ anti-inflammatory macrophages and ameliorated steatohepatitis as assessed by histology [101]. This is in line with results from human macrophages, where bile acid treatment in a TGR5-dependent way promoted the differentiation of an anti-inflammatory macrophage phenotype, characterized by an increased IL10/IL12 ratio [96].

AU2

Fig. 4 TGR5-dependent bile acid signaling. **(a)** In most cell types TGR5 is associated with a G_s-protein, therefore, ligand binding triggers and activation of adenylate cyclase inducing an increase of the ATP-dependent cAMP production and an activation of the protein kinase A (PKA), which in turn may trigger several different signaling pathways. **(b)** Furthermore, interaction of TGR5 with G_i-proteins inhibiting adenylate cyclase activity has been demonstrated for ciliated

297 **Role of TGR5 in Sinusoidal Endothelial Cells and Hepatic Stellate 298 Cells**

299 Liver sinusoidal endothelial cells (LSEC) are exposed to varying concentrations of
300 nutrients, including BAs. After food intake, BA levels rise in portal venous blood
301 and reach concentrations between 14 and 43 μ M [1, 102–104]. Ligand binding to
302 TGR5 on LSEC triggered not only increased expression of endothelial NO synthase
303 (eNOS) but also stimulated phosphorylation of eNOS at serine 1177 via activation of
304 protein kinase A (PKA), resulting in increased NO production in rat liver slices
305 [58]. Similar results were obtained after TLCA treatment of endothelial cells from
306 bovine aorta or human umbilical vein [105]. Furthermore, TLCA inhibited
307 LPS-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) and
308 subsequent monocyte [105]. LSEC are an important NO donor in the hepatic
309 sinusoids. Decreased NO production in LSEC is one hallmark of portal hypertension
310 [1, 106–109]. Thus, stimulation of TGR5 and activation of the cAMP-PKA-eNOS-
311 NO downstream signaling pathway may be beneficial in portal hypertension
312 [1, 4]. In carbon tetrachloride treated mice simultaneous administration of a TGR5
313 agonist (6 β -ethyl-3 α ,7 β -dihydroxy-5 β -cholan-24-ol (BAR501) 15 mg/kg/day) did
314 not protect the animals from development of liver fibrosis, however inhibited the
315 development of endothelial dysfunction and portal hypertension [110]. This benefi-
316 cial effect was associated with reduced expression of endothelin-1 and increased
317 expression of cystathionine- γ -lyase (CSE), an enzyme responsible for the generation
318 of the vasodilatory agent hydrogen sulfide [110].

319 TGR5 mRNA expression was below the detection level in freshly isolated HSC
320 but increased significantly within days in culture [57, 81]. In activated,
321 myofibroblast-like HSC elevation of cAMP led to an internalization of the
322 endothelin-A (ET-A) receptor thereby attenuating the contractile response of the
323 cells toward endothelin-1 [111]. Stimulation of TGR5 on activated HSC may trigger
324 cAMP-mediated ET-A receptor desensitization and thereby contribute to reduced
325 portal pressure.

326 While activation of the TGR5-cAMP-PKA-eNOS-NO signaling pathway in
327 LSEC may allow for adaption of sinusoidal blood flow in response to nutrient intake
328 thereby promoting hepatic metabolism under physiological conditions, stimulation
329 of TGR5 on LSEC and activated HSC may attenuate portal hypertension develop-
330 ment after liver damage [1].

AU3

AU4

Fig. 4 (continued) cholangiocytes, where activation of TGR5 inhibited cell proliferation [49]. **(c)** Coupling of TGR5 with G_q-proteins has been observed in the oesophageal adenocarcinoma cell line (FLO) and triggered expression of NADPH oxidase NOX-5 and cell proliferation [61]. G_q-proteins may signal through activation of phospholipase C which in turn triggers the synthesis of diacylglycerol (DAG) and inositol trisphosphate (IP₃). By induction of protein kinase C (PKC) activity and release of intracellular Ca₂ from the endoplasmatic reticulum (ER) these two second messenger proteins are causing the phosphorylation of different target proteins. **(d)** TGR5-dependent signaling in cholangiocytes. Modified after [52]

TGR5 in Human Liver Disease

331

In contrast to mice little is known on the role of TGR5 for the pathogenesis of human 332 liver diseases [92]. In line with the high expression of TGR5 in cholangiocytes, 333 TGR5 expression, localization, and function have been studied in biliary diseases. 334 TGR5 protein levels as measured by relative quantification of TGR5 immunofluo- 335 rescence staining in relation to cytokeratin 7 staining were significantly higher in 336 human cholangiocarcinoma (CCA) tissue as compared to cholangiocytes from the 337 nontumorous resection margins [52, 85]. Using CCA-derived cell lines (EGI-1 and 338 TFK-1), it was demonstrated that activation of TGR5 triggers cell proliferation using 339 the same ROS-cSrc-MMP-EGFR-ERK1/2 signaling pathway as in cultured murine 340 cholangiocytes [52]. Furthermore, TGR5 stimulation induced apoptosis resistance 341 and promoted cell migration and invasiveness. Thus, the receptor may contribute to 342 CCA progression. 343

An overexpression of TGR5 has also been described in cystic cholangiocytes of 344 polycystic liver disease (PLD) [112]. Stimulation of TGR5 in rodent cystic 345 cholangiocytes promotes a rise in intracellular cAMP, which triggers proliferation 346 and cyst growth, while deletion of TGR5 in a rodent model of PLD attenuates cyst 347 formation [112]. 348

In contrast to CCA- and PLD-derived biliary cells, which are characterized by 349 high TGR5 expression levels, a reduction in TGR5 immunofluorescence staining 350 intensity has been observed in cholangiocytes of livers from patients with primary 351 sclerosing cholangitis (PSC) as well as in livers from *Abcb4* (Mdr2) knockout mice, 352 which serve as an animal model for PSC [52, 85, 92, 112]. The mechanisms as well 353 as the timing (early or late) of the TGR5 downregulation in the disease course of PSC 354 is yet unclear [85, 92]; however, the reduced TGR5 expression may render 355 cholangiocytes more susceptible toward BA-mediated cytotoxicity and thus acceler- 356 ate disease progression [92]. 357

Conclusion

358

Bile acids are signaling molecules with pleiotropic endocrine and paracrine 359 functions which are mediated by multiple BA sensing molecules, thus enabling a 360 BA- and cell type-specific response. BAs regulate bile acid, glucose, lipid and 361 energy homeostasis, modulate the immune response and affect cell survival and 362 cell proliferation. Therefore, BAs and BA sensors have emerged as attractive targets 363 for the treatment of metabolic diseases such as steatohepatitis, obesity, diabetes, and 364 atherosclerosis. TGR5 (Gpbar1, M-Bar) is a G protein-coupled receptor highly 365 responsive to primary and secondary bile acids as well as to various progesterone 366 metabolites. The receptor is almost ubiquitously expressed and has been detected in 367 tissues participating in bile acid synthesis and secretion such as liver, intestine, and 368 kidney. However, TGR5 is also found in placenta, adrenal glands, and brain, where 369 the receptor may primarily serve as membrane-bound receptor for steroid hormones. 370 In line with the broad tissue expression TGR5 has numerous functions including 371

modulation of the immune response, regulation of glucose and energy homeostasis as well as intestinal motility. In liver, TGR5 activation can modulate liver microcirculation, promote biliary secretion and proliferation of biliary epithelial cells, induce gallbladder filling and exert anti-inflammatory effects. Targeted deletion of TGR5 renders mice more susceptible toward inflammatory as well as cholestatic liver injury and impairs liver regeneration. In contrast, pharmacological stimulation of TGR5 improves steatohepatitis.

While TGR5 is overexpressed in cholangiocarcinoma tissue and promotes apoptosis resistance, cell proliferation, cell migration and invasiveness in CCA cell lines, the receptor is downregulated in cholangiocytes of livers from patients with progressive sclerosing cholangitis (PSC) as well as in livers from Mdr2 knockout mice, which serve as an animal model for PSC. Further studies are needed to elucidate the role of TGR5 in human liver disease.

References

1. Häussinger D, Reinehr R, Keitel V. Bile acid signaling in the liver and the biliary tree. In: Häussinger D, Keitel V, Kubitz R, editors. *Hepatobiliary transport in health and disease*. Berlin: DeGruyter; 2012. p. 85–102.
2. Copple BL, Li T. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. *Pharmacol Res*. 2016;104:9–21.
3. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, et al. Recent advances in 2D and 3D *in vitro* systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. *Arch Toxicol*. 2013;87:1315–530.
4. Keitel V, Häussinger D. Perspective: TGR5 (Gpbar-1) in liver physiology and disease. *Clin Res Hepatol Gastroenterol*. 2012;36:412–9.
5. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. *J Hepatol*. 2011;54:1263–72.
6. Kalaany NY, Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. *Annu Rev Physiol*. 2006;68:159–91.
7. Kliwera SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 pathway. *Dig Dis*. 2015;33:327–31.
8. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, et al. Identification of a nuclear receptor for bile acids. *Science*. 1999;284:1362–5.
9. Modica S, Bellafante E, Moschetta A. Master regulation of bile acid and xenobiotic metabolism via the FXR, PXR and CAR trio. *Front Biosci (Landmark Ed)*. 2009;14:4719–45.
10. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliwera SA, Stimmel JB, et al. Bile acids: natural ligands for an orphan nuclear receptor. *Science*. 1999;284:1365–8.
11. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. *Mol Cell*. 1999;3:543–53.
12. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. *Proc Natl Acad Sci USA*. 2001;98:3369–74.
13. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. *Proc Natl Acad Sci USA*. 2001;98:3375–80.

14. Gascon-Barre M, Demers C, Mirshahi A, Neron S, Zalzal S, Nanci A. The normal liver 417
harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. 418
Hepatology. 2003;37:1034–42. 419

15. Han S, Chiang JY. Mechanism of vitamin D receptor inhibition of cholesterol 7alpha- 420
hydroxylase gene transcription in human hepatocytes. Drug Metab Dispos. 2009;37:469–78. 421

16. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, et al. 422
Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296:1313–6. 423

17. Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR 424
paradigm. Nucl Recept Signal. 2010;8:e005. 425

18. Modica S, Moschetta A. Nuclear bile acid receptor FXR as pharmacological target: are we 426
there yet? FEBS Lett. 2006;580:5492–9. 427

19. Pellicciari R, Costantino G, Camaioni E, Sadeghpour BM, Entrena A, Willson TM, Fiorucci S, 428
et al. Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and 429
structure-activity relationship of a series of body and side chain modified analogues of 430
chenodeoxycholic acid. J Med Chem. 2004;47:4559–69. 431

20. Cheng K, Chen Y, Zimniak P, Raufman JP, Xiao Y, Frucht H. Functional interaction of 432
lithocholic acid conjugates with M3 muscarinic receptors on a human colon cancer cell line. 433
Biochim Biophys Acta. 2002;1588:48–55. 434

21. Raufman JP, Chen Y, Cheng K, Compadre C, Compadre L, Zimniak P. Selective interaction of 435
bile acids with muscarinic receptors: a case of molecular mimicry. Eur J Pharmacol. 436
2002;457:77–84. 437

22. Raufman JP, Chen Y, Zimniak P, Cheng K. Deoxycholic acid conjugates are muscarinic 438
cholinergic receptor antagonists. Pharmacology. 2002;65:215–21. 439

23. Sheikh Abdul Kadir SH, Miragoli M, Abu-Hayyeh S, Moshkov AV, Xie Q, Keitel V, 440
Nikolaev VO, et al. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in 441
neonatal rat cardiomyocytes. PLoS One. 2010;5:e9689. 442

24. Chen X, Yang D, Shen W, Dong HF, Wang JM, Oppenheim JJ, Howard MZ. Characterization 443
of chenodeoxycholic acid as an endogenous antagonist of the G-coupled formyl peptide 444
receptors. Inflamm Res. 2000;49:744–55. 445

25. Ferrari C, Macchiarulo A, Costantino G, Pellicciari R. Pharmacophore model for bile acids 446
recognition by the FPR receptor. J Comput Aided Mol Des. 2006;20:295–303. 447

26. Chiang JY. Sphingosine-1-phosphate receptor 2: a novel bile acid receptor and regulator of 448
hepatic lipid metabolism? Hepatology. 2015;61:1118–20. 449

27. Kwong E, Li Y, Hylemon PB, Zhou H. Bile acids and sphingosine-1-phosphate receptor 2 in 450
hepatic lipid metabolism. Acta Pharm Sin B. 2015;5:151–7. 451

28. Liu R, Li X, Qiang X, Luo L, Hylemon PB, Jiang Z, Zhang L, et al. Taurocholate induces 452
cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human 453
cholangiocarcinoma cell line. J Biol Chem. 2015;290:30988–1002. 454

29. Liu R, Zhao R, Zhou X, Liang X, Campbell DJ, Zhang X, Zhang L, et al. Conjugated bile acids 455
promote cholangiocarcinoma cell invasive growth through activation of sphingosine 456
1-phosphate receptor 2. Hepatology. 2014;60:908–18. 457

30. Nagahashi M, Takabe K, Liu R, Peng K, Wang X, Wang Y, Hait NC, et al. Conjugated bile 458
acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene 459
expression. Hepatology. 2015;61:1216–26. 460

31. Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, et al. Conjugated 461
bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. 462
Hepatology. 2012;55:267–76. 463

32. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, et al. A G 464
protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–40. 465

33. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, et al. 466
Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res 467
Commun. 2002;298:714–9. 468

34. Sato H, Macchiarulo A, Thomas C, Gioiello A, Une M, Hofmann AF, Saladin R, et al. Novel 469
potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure- 470
activity relationships, and molecular modeling studies. J Med Chem. 2008;51:1831–41. 471

472 35. Gohlke H, Schmitz B, Sommerfeld A, Reinehr R, Häussinger D. alpha5 beta1-integrins are
473 sensors for taurooursodeoxycholic acid in hepatocytes. *Hepatology*. 2013;57:1117–29.

474 36. Häussinger D, Kurz AK, Wettstein M, Graf D, Vom Dahl S, Schliess F. Involvement of
475 integrins and Src in taurooursodeoxycholate-induced and swelling-induced choleresis. *Gastro-
476 enterology*. 2003;124:1476–87.

477 37. Sommerfeld A, Reinehr R, Häussinger D. Taurooursodeoxycholate protects rat hepatocytes
478 from bile acid-induced apoptosis via beta1-integrin- and protein kinase A-dependent
479 mechanisms. *Cell Physiol Biochem*. 2015;36:866–83.

480 38. Becker S, Reinehr R, Graf D, vom DS, Häussinger D. Hydrophobic bile salts induce hepato-
481 cyte shrinkage via NADPH oxidase activation. *Cell Physiol Biochem*. 2007;19:89–98.

482 39. Becker S, Reinehr R, Grether-Beck S, Eberle A, Häussinger D. Hydrophobic bile salts trigger
483 ceramide formation through endosomal acidification. *BiolChem*. 2007;388:185–96.

484 40. Graf D, Kurz AK, Fischer R, Reinehr R, HÑussinger D. Taurolithocholic acid-3 sulfate
485 induces CD95 trafficking and apoptosis in a c-Jun N-terminal kinase-dependent manner.
486 *Gastroenterology*. 2002;122:1411–27.

487 41. Häussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F. Molecular aspects of medicine: from
488 experimental to clinical hepatology. *Mol Aspects Med*. 2004;25:221–360.

489 42. Reinehr R, Becker S, Keitel V, Eberle A, Grether-Beck S, Häussinger D. Bile salt-induced
490 apoptosis involves NADPH oxidase isoform activation. *Gastroenterology*. 2005;129:2009–31.

491 43. Reinehr R, Becker S, Wettstein M, Häussinger D. Involvement of the Src family kinase yes in
492 bile salt-induced apoptosis. *Gastroenterology*. 2004;127:1540–57.

493 44. Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, et al.
494 Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis.
495 *PLoS One*. 2010;5:e12403.

496 45. Offermanns S. G-proteins as transducers in transmembrane signalling. *Prog Biophys Mol Biol*.
497 2003;83:101–30.

498 46. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. *Nat Rev Mol Cell
499 Biol*. 2002;3:639–50.

500 47. Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions.
501 *Physiol Rev*. 2005;85:1159–204.

502 48. Lavoie B, Balembo OB, Godfrey C, Watson CA, Vassileva G, Corvera CU, Nelson MT, et al.
503 Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1
504 receptors and activation of KATP channels. *J Physiol*. 2010;588:3295–305.

505 49. Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA,
506 et al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional
507 response to bile acid signaling. *Am J Physiol Gastrointest Liver Physiol*. 2013;304:G1013–24.

508 50. Perino A, Pols TW, Nomura M, Stein S, Pellicciari R, Schoonjans K. TGR5 reduces macro-
509 phage migration through mTOR-induced C/EBPbeta differential translation. *J Clin Invest*.
510 2014;124:5424–36.

511 51. Rajagopal S, Kumar DP, Mahavadi S, Bhattacharya S, Zhou R, Corvera CU, Bennett NW,
512 et al. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle
513 relaxation via both Epac- and PKA-mediated inhibition of RhoA/rho kinase pathway. *Am J
514 Physiol Gastrointest Liver Physiol*. 2013;304:G527–35.

515 52. Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubitz R, Ullmer C, et al. TGR5
516 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. *Gut*.
517 2016;65:487–501.

518 53. Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D. The membrane-bound
519 bile acid receptor TGR5 is localized in the epithelium of human gallbladders. *Hepatology*.
520 2009;50:861–70.

521 54. Keitel V, Gorg B, Bidmon HJ, Zemtsova I, Spomer L, Zilles K, Haussinger D. The bile acid
522 receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. *Glia*. 2010;58:1794–805.

523 55. Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, et al. TGR5
524 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading.
525 *Cell Metab*. 2011;14:747–57.

56. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. *Cell Metab.* 2009;10:167–77. 526
527

57. Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. *Biochem Biophys Res Commun.* 2008;372:78–84. 528
529

58. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Gorg B, Selbach O, Häussinger D, et al. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. *Hepatology.* 2007;45:695–704. 530
531
532

59. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messadeq N, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. *Nature.* 2006;439:484–9. 533
534
535

60. Lieu T, Jayaweera G, Zhao P, Poole DP, Jensen D, Grace M, McIntyre P, et al. The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. *Gastroenterology.* 2014;147:1417–28. 536
537
538

61. Hong J, Behar J, Wands J, Resnick M, Wang LJ, DeLellis RA, Lambeth D, et al. Role of a novel bile acid receptor TGR5 in the development of oesophageal adenocarcinoma. *Gut.* 2010;59:170–80. 539
540
541

62. Martin RE, Bissantz C, Gavelle O, Kuratli C, Dehmlow H, Richter HG, Obst Sander U, et al. 2-Phenoxy-nicotinamides are potent agonists at the bile acid receptor GPBAR1 (TGR5). *ChemMedChem.* 2013;8:569–76. 542
543
544

63. Cao H, Chen ZX, Wang K, Ning MM, Zou QA, Feng Y, Ye YL, et al. Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect. *Sci Rep.* 2016;6:28676. 545
546
547

64. Duan H, Ning M, Zou Q, Ye Y, Feng Y, Zhang L, Leng Y, et al. Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. *J Med Chem.* 2015;58:3315–28. 548

65. Gertzen CG, Spomer L, Smits SH, Haussinger D, Keitel V, Gohlke H. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. *Eur J Med Chem.* 2015;104:57–72. 550
551
552

66. Katritch V, Cherezov V, Stevens RC. Structure-function of the G protein-coupled receptor superfamily. *Annu Rev Pharmacol Toxicol.* 2013;53:531–56. 553
554

67. Maruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, et al. Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-bar) in mice. *J Endocrinol.* 2006;191:197–205. 555
556
557

68. Vassileva G, Golovko A, Markowitz L, Abbondanzo SJ, Zeng M, Yang S, Hoos L, et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. *Biochem J.* 2006;398:423–30. 558
559
560

69. Keitel V, Spomer L, Marin JJ, Williamson C, Geenes V, Kubitz R, Häussinger D, et al. Effect of maternal cholestasis on TGR5 expression in human and rat placenta at term. *Placenta.* 2013;34:810–6. 561
562
563

70. Duboc H, Tolstanova G, Yuan PQ, Wu VS, Kaji I, Biraud M, Akiba Y, et al. Reduction of epithelial secretion in male rat distal colonic mucosa by bile acid receptor TGR5 agonist, INT-777: role of submucosal neurons. *Neurogastroenterol Motil.* 2016;28:1663–76. 564
565
566

71. Keitel V, Ullmer C, Häussinger D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. *Biol Chem.* 2010;391:785–9. 567
568

72. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. *Mol Endocrinol.* 2011;25:1066–71. 569
570
571

73. Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, et al. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. *Neurogastroenterol Motil.* 2010;22:814–825, e227–818. 572
573
574

74. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. *Biochem Biophys Res Commun.* 2005;329:386–90. 575
576
577

75. Ullmer C, Alvarez Sanchez R, Sprecher U, Raab S, Mattei P, Dehmlow H, Sewing S, et al. Systemic bile acid sensing by G protein-coupled bile acid receptor 1 (GPBAR1) promotes PYY and GLP-1 release. *Br J Pharmacol.* 2013;169:671–84. 578
579
580

581 76. Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, et al. G protein-
582 coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes.
583 J Am Soc Nephrol. 2016;27:1362–78.

584 77. Kumar DP, Asgharpour A, Mirshahi F, Park SH, Liu S, Imai Y, Nadler JL, et al. Activation of
585 transmembrane bile acid receptor TGR5 modulates pancreatic islet alpha cells to promote
586 glucose homeostasis. J Biol Chem. 2016;291:6626–40.

587 78. Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal
588 AJ. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in
589 pancreatic beta cells. Biochem Biophys Res Commun. 2012;427:600–5.

590 79. Ward JB, Mroz MS, Keely SJ. The bile acid receptor, TGR5, regulates basal and cholinergic-
591 induced secretory responses in rat colon. Neurogastroenterol Motil. 2013;25:708–11.

592 80. Keitel V, Häussinger D. TGR5 in cholangiocytes. Curr Opin Gastroenterol. 2013;29:299–304.

593 81. Sawitza I, Kordes C, Gotze S, Herebian D, Haussinger D. Bile acids induce hepatic differenti-
594 ation of mesenchymal stem cells. Sci Rep. 2015;5:13320.

595 82. McMillin M, Frampton G, Tobin R, Dusio G, Smith J, Shin H, Newell-Rogers K, et al. TGR5
596 signaling reduces neuroinflammation during hepatic encephalopathy. J Neurochem.
597 2015;135:565–76.

598 83. Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP, Murphy JE, et al. The bile
599 acid receptor TGR5 does not interact with beta-arrestins or traffic to endosomes but transmits
600 sustained signals from plasma membrane rafts. J Biol Chem. 2013;288:22942–60.

601 84. Donepudi AC, Boehme S, Li F, Chiang JY. G-protein-coupled bile acid receptor plays a key
602 role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology.
603 2016;65:813–27.

604 85. Keitel V, Reich M, Häussinger D. TGR5: pathogenetic role and/or therapeutic target in
605 fibrosing cholangitis? Clin Rev Allergy Immunol. 2015;48:218–25.

606 86. Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, et al.
607 Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and
608 selective agonist for the TGR5 receptor, a novel target for diabetes. J Med Chem.
609 2009;52:7958–61.

610 87. Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP. The
611 biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of
612 fibrosing cholangiopathies. Hepatology. 2010;52:1489–96.

613 88. Beuers U, Maroni L, Elferink RO. The biliary HCO(3)(-) umbrella: experimental evidence
614 revisited. Curr Opin Gastroenterol. 2012;28:253–7.

615 89. Hohenester S, Wenniger LM, Paulusma CC, van Vliet SJ, Jefferson DM, Elferink RP, Beuers
616 U. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced
617 injury in human cholangiocytes. Hepatology. 2012;55:173–83.

618 90. Maillette de Buy Wenniger LJ, Hohenester S, Maroni L, van Vliet SJ, Oude Elferink RP,
619 Beuers U. The cholangiocyte glycocalyx stabilizes the ‘biliary HCO3 umbrella’: an integrated
620 line of defense against toxic bile acids. Dig Dis. 2015;33:397–407.

621 91. Pean N, Doignon I, Garcin I, Besnard A, Julien B, Liu B, Brancheau S, et al. The receptor
622 TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology.
623 2013;58:1451–60.

624 92. Reich M, Klindt C, Deutschmann K, Spomer L, Häussinger D, Keitel V. Role of the G protein-
625 coupled bile acid receptor TGR5 in liver damage. Dig Dis. 2017;35:235–40.

626 93. Briere DA, Ruan X, Cheng CC, Siesky AM, Fitch TE, Dominguez C, Sanfeliciano SG, et al.
627 Novel small molecule agonist of TGR5 possesses anti-diabetic effects but causes gallbladder
628 filling in mice. PLoS One. 2015;10:e0136873.

629 94. Duan H, Ning M, Chen X, Zou Q, Zhang L, Feng Y, Zhang L, et al. Design, synthesis, and
630 antidiabetic activity of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carboxamide
631 derivatives as potent and orally efficacious TGR5 agonists. J Med Chem. 2012;55:10475–89.

632 95. Maurer KJ, Carey MC, Fox JG. Roles of infection, inflammation, and the immune system in
633 cholesterol gallstone formation. Gastroenterology. 2009;136:425–40.

96. Haselow K, Bode JG, Wammers M, Ehltung C, Keitel V, Kleinebrecht L, Schupp AK, et al. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. *J Leukoc Biol.* 2013;94:1253–64.

97. Wang YD, Chen WD, Yu D, Forman BM, Huang W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF- κ B) in mice. *Hepatology.* 2011;54:1421–32.

98. Hogenauer K, Arista L, Schmiedeberg N, Werner G, Jaksche H, Bouhelal R, Nguyen DG, et al. G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. *J Med Chem.* 2014;57:10343–54.

99. Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT, Higuchi H, Matsuoka K, et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. *Immunology.* 2012;136:153–62.

100. Perino A, Schoonjans K. TGR5 and immunometabolism: insights from physiology and pharmacology. *Trends Pharmacol Sci.* 2015;36:847–57.

101. McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. *J Biol Chem.* 2013;288:11761–70.

102. Angelin B, Bjorkhem I, Einarsson K, Ewerth S. Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. *J Clin Invest.* 1982;70:724–31.

103. Einarsson K, Alvelius G, Hillebrant CG, Reihner E, Bjorkhem I. Concentration of unsulfated lithocholic acid in portal and systemic venous plasma: evidence that lithocholic acid does not down regulate the hepatic cholesterol 7 alpha-hydroxylase activity in gallstone patients. *Biochim Biophys Acta.* 1996;1317:19–26.

104. Fukushima K, Ichimiya H, Higashijima H, Yamashita H, Kuroki S, Chijiwa K, Tanaka M. Regulation of bile acid synthesis in the rat: relationship between hepatic cholesterol 7 alpha-hydroxylase activity and portal bile acids. *J Lipid Res.* 1995;36:315–21.

105. Kida T, Tsubosaka Y, Hori M, Ozaki H, Murata T. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. *Arterioscler Thromb Vasc Biol.* 2013;33:1663–9.

106. Harbrecht BG, Wu B, Watkins SC, Marshall HP Jr, Peitzman AB, Billiar TR. Inhibition of nitric oxide synthase during hemorrhagic shock increases hepatic injury. *Shock.* 1995;4:332–7.

107. Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. *J Hepatol.* 2007;46:927–34.

108. Theodorakis NG, Wang YN, Skill NJ, Metz MA, Cahill PA, Redmond EM, Sitzmann JV. The role of nitric oxide synthase isoforms in extrahepatic portal hypertension: studies in gene-knockout mice. *Gastroenterology.* 2003;124:1500–8.

109. Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? *Lancet.* 1991;337:776–8.

110. Renga B, Cipriani S, Carino A, Simonetti M, Zampella A, Fiorucci S. Reversal of endothelial dysfunction by GPBAR1 agonism in portal hypertension involves a AKT/FOXO1A dependent regulation of H2S generation and endothelin-1. *PLoS One.* 2015;10:e0141082.

111. Reinehr R, Fischer R, Häussinger D. Regulation of endothelin-a receptor sensitivity by cyclic adenosine monophosphate in rat hepatic stellate cells. *Hepatology.* 2002;36:861–73.

112. Masyuk TV, Masyuk AI, LaRusso NF. TGR5 in the cholangiociliopathies. *Dig Dis.* 2015;33:420–5.

Author Queries

Chapter No.: 4 395361_1_En

Query Refs.	Details Required	Author's response
AU1	Please check the hierarchy of the section headings and confirm if correct.	
AU2	Please check and confirm that the inserted citation of Fig. 4 is appropriate here.	
AU3	Please check and confirm the edits made in the sentence beginning "This beneficial effect was associated with reduced..."	
AU4	Please check and confirm the edit made in the sentence beginning "Stimulation of TGR5 on activated HSC may trigger..."	