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Abstract: Non-human primates (NHP) are an important source of viruses that can spillover to 

humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 

emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) 

with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs 

are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, 

and other animals, but not in humans. They are apathogenic, and significant differences exist 

between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence 

of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and 

APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of 

FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV 

biology, host restriction factors, and FV–host interactions with an emphasis on the consequences of 

FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies. 
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1. Foamy Viruses 

The first description of a foamy virus (FV) was reported in 1954 [1]. It was found as 

a contaminant with an atypical cytopathic effect (CPE), eliciting the formation of 

multinucleated and vacuolated giant cells in primary kidney cell cultures from Old World 

monkeys of the Macacaceae family. The name FV or spumaretrovirus was derived from 

the foam-like appearance of syncytia in the infected monolayer cell cultures. FVs were 

classified as retroviruses after the detection of the FV reverse transcription (RT) enzyme. 

The first isolation of the “foamy viral agent” occurred in 1955 [2]. In 1971, a viral agent 

with FV-like characteristics was identified from lymphoblastoid cells in cultures of a 

nasopharyngeal carcinoma (NPC) from a Kenyan patient [3]. The origin of this human 

foamy virus (HFV) was discussed until 1994, when HFV was cloned and sequenced [4]. 

The 86 to 95% amino acid identity between simian foamy virus from chimpanzee 

(SFVcpz) and HFV suggested that HFV is likely a variant of SFVcpz and not a unique 

isolate [4]. Sequence comparisons between the original HFV isolate and SFV from four 

distinct subspecies of chimpanzee demonstrate that it is most closely related to FV from 

Pan troglodytes schweinfurthii, whose natural habitat includes Kenya. Since the original 

HFV isolate came from a person who might have had contact with chimpanzees in Kenya, 
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the virus was probably acquired as a zoonotic infection (transmission from animals to 

humans). For detailed reviews on foamy virus epidemiology and zoonotic infections see 

[5–7]. HFV has now been renamed as the prototype foamy virus (PFV), although it is 

debated whether the “real” origin of the virus isolate derived from in vivo cross-species 

transmission from chimpanzee or from a cell culture contamination [5]. Evidence suggests 

that diverse SFVs are transmitted from primates to humans, but not between humans [5,8–

12]. Notably, African green monkeys and apes have a higher prevalence for SFV, and then 

for simian immunodeficiency virus (SIV), and SIV-infected animals are often also positive 

for SFVs, indicating that co-infection of these two viruses is common in African primates 

[13–18]. 

2. Host-Virus Co-Speciation and Evolution 

2.1. Simian Foamy Viruses 

FV genomes display high evolutionary conservation among all the species infected, 

and FV genetic variability within one infected animal is very low over time (<1% variation) 

[19]. The phylogenetic analysis of SFV polymerase and mitochondrial cytochrome oxidase 

subunit II (COII) from African and Asian primates provide very similar branching order 

and divergence times among the two trees, supporting the co-speciation. Molecular clock 

calibrations have revealed an extremely low rate of SFV evolution, 1.7 × 10−8 base 

substitutions per site per year, making FV the slowest-evolving virus documented so far. 

These investigations moreover revealed highly congruent relationships, indicating virus-

host co-evolution for at least 30–40 million years [20,21]. The various SFVs do not seem to 

cause any recognizable disease in their natural hosts, despite being highly cytopathic in 

tissue culture [5,6,22,23]. Although copying of the FV genome is highly accurate, therefore 

maintaining a stable genome, frequent recombination events between several circulating 

FV strains, as well as deletions and mutations, have been reported in wild-living 

chimpanzees [14,24]. 

SFVs are highly prevalent. In captive primate populations, infection rates ranging 

from 70% to 100% are reported in adult animals [5,6,23], and similarly high numbers of 

SFVcpz infections in wild-living chimpanzees across equatorial Africa were documented 

[14]. High FV prevalence was also reported in the Asian macaques (Macaca fascicularis) 

population and Wild red colobus monkeys in Tai national park, West Africa [11,25] as 

well as in New World primates in Central and South America [26]. A recent study 

identified a diversity of SFV strains in free-ranging rhesus macaques in Bangladesh [27]. 

Adult chimpanzees had significantly higher infection rates (13 out of 13 animals) than 

infants and juveniles, suggesting horizontal transmission [14]. Hunters, poachers, 

zookeepers, temple workers, and villagers who are occupationally exposed to non-human 

primates (NHP) can also become infected with SFV [28–31] (documented in [5]). Ongoing 

zoonotic transmissions are reported from zoos or primate centers in Gabon and in China 

[32–34], and also confirmed in hunters in Gabon, where severe bites from gorillas were 

causative [34]. However, humans are dead-end hosts of primate foamy viruses, and no 

human foamy virus has evolved so far [10,35,36]. 

2.2. Non-Simian Foamy Viruses 

FVs are also prevalent in non-simian hosts such as cats [37,38], pumas [39], cattle [40–

42], horses [43], certain bats (Rhinolophus affinis) [44], and likely more species (reviewed in 

[15,45–47]). Apparently, these FVs are non-pathogenic in their hosts, and the infection 

prevalence is recorded as about 7–45% in cattle and 30–100% in cats, mainly in adults 

[45,47–50]. Isolation of an equine FV and a comprehensive sero-epidemiology of infections 

were reported recently, with a positive rate of 25–41% [51]. These reports suggest that 

non-simian FV infections are highly prevalent in these animals. 
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2.3. Endogenous Foamy Viruses 

When retroviruses get access to gametocytes, the resulting endogenous provirus can 

be passaged in the germline along with the host cell genome, but in most cases carries 

inactivating mutations or deletions [52,53]. Endogenous FVs were discovered in the 

genomes of the Madagascar aye-aye (Daubentonia madagascariensis, a strepsirrhine 

primate), the two-toed (Choloepus hoffmanni) and three-toed sloths (Bradypus pygmaeus) 

from South America, platyfish (Xiphophorus maculatus), and cod species [54–56], and FV-

like insertions within the genome of the Coelacanth (Latimeria chalumnae) [57]. Very 

recently, 36 novel lineages of amphibian and fish foamy-like endogenous retroviruses 

were identified, and the ancient marine origin of retroviruses was suggested to be in the 

Ordovician period, early Palaeozoic Era, coinciding with the origin of jawed vertebrates 

[58]. Recent studies also identified endogenous FV sequences in genomes of reptiles, birds, 

and snakes [59–62]. Together, these results provide details of FV-host coevolution over a 

time of over 450 million years (MYA). These findings of newly identified ancient 

endogenous and an increasing number of exogenous FVs not only extend the age of FVs, 

but the finding in non-mammalian vertebrate phyla supports the concept of the great 

evolutionary success of this retroviral subfamily [63]. 

3. Molecular Biology of FV 

Foamy viruses have complex RNA genomes (ranging from 10.5 kbp Feline FV [64] to 

13 kbp SFVcpz [4]), which encode Tas (or bel-1) (a nuclear transcriptional transactivator) 

and Bet (an auxiliary protein) in addition to Gag, Pol, and Env. Of note, the Bet protein of 

FV is not related to “bromodomain and extra-terminal (BET) proteins”, which are cellular 

histone acetylation readers. 

FVs display several peculiar features among retroviruses. FV Gag is translated as a 

precursor protein only as Gag and not also as a Gag-Pol fusion protein [65–67]. FV Gag 

lacks characteristic domains such as membrane-binding domains, the major homology 

regions (MHR), and the hallmark Cys-His motifs. Rather, they possess numerous specific 

domains, such as the essential Gag-Env interaction domain and the Gly and Arg rich 

boxes (GR) regions, reviewed in [68]. Moreover, FV Gag undergoes limited maturation by 

the FV protease. This processing of Gag (PFV pr71 Gag) does not yield matrix, capsid, and 

nucleocapsid (so FVs have an “immature” appearance, despite being highly infectious), 

but only removes a small 3 kDa C-terminal peptide resulting in p68 Gag [69,70], which is 

essential for FV infectivity [71,72]. 

Unlike Pol proteins from orthoretrovirinae, FV Pol is synthesized independently of 

Gag (from a singly spliced pol mRNA), and encapsidation of Pol is thought to be mediated 

by viral RNA bridging Gag and Pol molecules [73–76]. The fidelity of PFV PR-RT with 

respect to base substitutions was suggested to be similar to that of HIV-1 RT, although it 

can generate more insertions and deletions [77]. In comparison with the DNA polymerase 

processivity of HIV-RT, the processivity of PFV PR-RT is higher; therefore, having a few 

Pol molecules in the viral particles might be sufficient for productive infection [77–80]. In 

contrast to the orthoretroviruses, FV reverse transcription takes place to some extent (5–

10%) late in the infection cycle (before the virus leaves the cell) [67,81,82]. During virus 

assembly, the pregenomic ssRNA (as a dimer) is incorporated and can be reverse 

transcribed to dsDNA before virus release (Figure 1). While it is generally accepted that 

viral genomic DNA contributes to productive infection during the spreading of FVs in 

cultures, both viral genomic RNA- and DNA-containing particles are found in the 

supernatant of FV-infected cells. Furthermore, studies conducted with reverse 

transcriptase inhibitor AZT (3′-azido-3′deoxythymidine) indicate that reverse 

transcription is mostly complete prior to an extracellular virus infecting new cells 

[67,76,81,83–86]. A few studies supported the existence of an early RT step during foamy 

virus infection upon entry, which is thought to be relevant at low multiplicities of infection 

[82,87]. The biological relevance of virions with DNA or RNA genomes is controversially 
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discussed, and the precise proportion of these needs to be determined, especially in vivo 

[14,67,81,82,86–88]. 

 

(A) 

 

(B) 

Figure 1. Genome organization of foamy viruses (FV) and schematic representation of replication 

strategies of animal viruses using reverse transcription (RT). (A) FV possesses gag, pol, and env 

genes. Additional regulatory and accessory bel1 and bel2 genes are localized between env and the 

3′LTR. The Bet protein is a product of a spliced transcript and consists of Bel1 (also known as Tas) 

and Bel2 (alternatively called ORF2) parts. Bel1 and bel2 transcripts are originating from the internal 

promoter (IP) element, which is indicated as a black triangle, and the direction of transcription is 

marked with a dashed arrow (figure modified from [89]). (B) Replication cycle: Orthoretroviruses 

(RNA genome in the virion) such as HIV-1 replicate through a dsDNA intermediate and require 

integration of viral genome into host genome for propagation. Hepadnaviruses (dsDNA in the vi-

rion) instead do not integrate their genome but require an RNA intermediate (late RT) for their 

replication. FVs integrate their genome (DNA) into the host chromosomal DNA like orthoretrovi-

ruses, but undergo late reverse transcription like hepadnaviruses. It is controversially discussed in 

the literature that FV virus particles encapsidate genomic viral RNA or already reverse-transcribed 

DNA, and the exact copy numbers of both viral genomic RNA and DNA in “cell-free” FV particles 

remains to be determined in vivo [14,67,82,86,87,90]. The release of FV viral particles depends on the 

FV glycoprotein [91] as in hepadnaviruses, while budding of orthoretroviral particles is Env-inde-

pendent. RT, reverse transcriptase, RNA and DNA molecules are denoted by blue lines with U and 

brown lines respectively. Arrows in the figure indicate the path of the viral replication event. (Figure 

adapted from [63] and taken from one author’s thesis [92]). Hepadnaviruses are depicted here to 

illustrate different viral replication strategies of animal viruses with a reverse transcription step. 

FVs are unable to establish a productive infection in G1/S growth-arrested or nondi-

viding cells [93], requiring mitosis for proviral integration and gene expression [93–96]. In 

vitro, FVs have the capacity to infect most cell types of vertebrate origin from fish to hu-

mans [45,97,98]. Heparan sulfate proteoglycans are suggested as an attachment factor for 

FV entry [99,100]. Glycoprotein-dependent FV entry into the host cells is achieved by pH-

dependent endocytosis and, alternatively, the release of naked FV capsids (cores) into the 

cytoplasm after fusion with the plasma membrane. Viral cores are then shuttled along 



Viruses 2021, 13, 504 5 of 22 
 

 

microtubules and accumulate at the microtubule organizing center (MTOC). Uncoating of 

capsids assisted by the host and viral proteases occurs during mitosis, and ultimately, the 

preintegration complex (PIC) gets access to the chromatin (via Gag tethering) for the viral 

genome integration [101–104], reviewed in [105,106]. Whereas studies on FV cellular tro-

pism in vivo are very limited, some reports indicated that FV DNA was detected in CD4+ 

and CD8+ lymphocytes, monocytes, and B-cells in humans, African green monkeys 

(AGM), chimpanzee, gorilla, and cattle [10,107–110]. One study suggested that the niche 

of in vivo FV replication in primates is limited to the differentiated superficial epithelial 

cells of the oral mucosa, a short-lived reservoir, resulting in nonpathogenic infections 

[111]. 

4. Innate Immune Sensing of Foamy Viruses 

Like other viruses, FVs not only have to exploit various host machinery for their pro-

ductive replication, but they have also to escape or counteract host antiviral responses, 

such as innate immune sensing and inhibition by cellular restriction factors. This area of 

research is particularly interesting because FV infections are apparently apathogenic in 

the hosts, but in vitro, FV infection triggers cytopathic effects and ultimately leads to cell 

death [22]. However, recent case–control studies among Cameroonian hunters infected 

with gorilla SFV identified an association of T-cell differentiation, monocyte activation, 

and hematological abnormalities with SFV infection [112,113]. These and a similar study 

that characterized an association of FFV with chronic kidney disease in cats [114] suggest 

that more research is needed to explore in vivo pathological changes by FVs. 

Innate sensing of FV is not well characterized. Early studies suggested a lack of type 

I interferon (IFN-I) induction by simian and human FV infections in different cell lines 

[115–117]. However, a later study demonstrated that FVs are sensed by human hemato-

poietic cells such as PBMCs and pDCs potently inducing the production of IFN-I and as-

sociated IFN-stimulated genes (ISG), like MX1 [118]. This study further highlighted that 

RNA but not DNA is responsible for the trigger, and TLR7 was identified as the main 

sensor. In cell culture, treatment with IFNs led to viral inhibition [116,117,119–123]. Our 

own results also supported the inhibition of various FVs by IFN-β, but not by the ISG 

product MX2 [124]. Additionally, a new study suggested that pharmacological inhibitors 

of the IFN-I response enhance the replication of primary gorilla SFVs [125]. Very recently, 

using a myeloid cell model, the innate sensing pathways involved in FV infection were 

described [88]. Efficient ISG induction was demonstrated by sensing of full-length PFV 

genomes but not of minimal vectors in the cytoplasm. Moreover, this study suggested that 

viral DNA but not RNA acts as the key stimulator since this innate response was mainly 

dependent on cellular cGAS and STING, and unaffected by RT inhibition during entry 

[88]. Foamy viral escape from sensing may be mediated in PFV infections by Gag-induced 

endosomal autophagy that facilitates the clearance of stress granules to repress an IFN-I 

response of the infected cell [126]. In addition, FV encoded micro-RNAs (miRNAs) as 

shown in BFV [127] and SFVs [128] could act as regulators of the innate immune response. 

BFV miR-BF2–5p can suppress the expression of IFN-β and NF-kB mRNAs by targeting 

Ankyrin Repeat Domain 17 (ANKRD17), an upstream regulator in the innate immune 

system and Bax-interacting factor 1 (Bif-1, official name SH3GLB1) [129]. 

Foamy Virus Inhibition by Cellular Restriction Factors 

Specific IFN-induced cellular gene products are able to restrict different retroviruses, 

including FVs [121,122,130–142]. Similar to other retroviruses, TRIM5α targets the core of 

PFV, SFV, and FFV during early post-infection events in a species-dependent manner 

[135,139,143]. The broad-spectrum of retroviral particle release inhibition by BST2 (teth-

erin) was reported to include FVs [131,132,137]. Fv1, a rodent restriction factor that inhib-

its murine leukemia virus (MLV), specifically, the Fv1 from Mus caroli, was found to in-

hibit FFV [138,144]. Human interferon-induced 35 kDa protein (IFP35), an interferon-in-

duced leucine zipper protein, was reported to confer resistance to BFV and PFV infection 
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by inhibiting Tas of BFV and PFV [142]. Furthermore, proteasomal-dependent degrada-

tion of PFV Tas by an E3 ubiquitin ligase, human p53-induced RING-H2 protein (PIRH2, 

official name RCHY1), was identified. PIRH2 was demonstrated to inhibit PFV replication 

and decreased the Tas-dependent transcriptional activation of the viral LTR and internal 

(IP) promoter [145]. A recent study using a screen of ISGs identified PHD finger domain 

protein-1 (PHF11) as an additional inhibitor of PFV [133]. Interestingly, PHF11 from hu-

mans and macaques were reported to be antiviral against multiple FVs but to be inactive 

against orthoretroviruses; thus, it appears to be FV-specific. PHF11 targets basal Tas ex-

pression by the IP (Figure 1A). As a consequence, Tas-dependent LTR activation is pre-

vented, likely promoting viral latency [133]. Moreover, human/bovine N-Myc interactors 

(NMI) [146] and human interferon-induced transmembrane (IFITM) proteins [141] were 

identified to restrict PFV/BFV and FFV replication, respectively [141]. 

Another type of innate frontline defense against retroviruses is mediated by the 

members of the APOBEC3 (A3) cytidine deaminases family. Our earlier study reported 

the DNA editing of the FFV genome in A3-positive feline CRFK cells (non-permissive 

phenotype), which dramatically diminished the FFV titer [134]. Two other studies demon-

strated A3-mediated (A3C, A3G, A3F from human, mA3, and cpzA3G) inhibition of PFV 

infectivity, correlating with encapsidation of A3 into PFV vectors due to a specific Gag-

A3 interaction and cytidine deamination of the viral reverse transcripts that resulted in G-

to-A hypermutation of the viral genome. Of note, both studies used PFV-based single-

round replication vectors [130,136]. Using a new statistical approach, A3G-mediated G-

to-A hypermutation was detected and quantified in macaques and humans who were zo-

onotically infected. These data suggest that human A3G but not simian A3s induce hy-

permutations, which are lethal to the virus, hence protecting humans from SFV transmis-

sion [27,147]. The following chapters discuss briefly A3 proteins, and then focus on Bet 

protein and A3s-FV interactions. The important role of the Bet protein in counteracting 

A3s and various Bet-A3 interactions that lead to the escape of FVs are highlighted. 

5. APOBEC3s: Eutheria-Specific Antiviral Polynucleotide DNA Cytidine Deaminases 

The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APO-

BEC3, A3) family of single-stranded (ss) DNA cytidine deaminases provides mammals 

with an innate immune barrier against retroviruses, retrotransposons, and other viral 

pathogens [148–153]. All placental mammals encode at least one A3 gene. Whereas ro-

dents possess single A3 (mouse A3, mA3 for instance) genes, humans express seven A3 

proteins, and bats likely up to 18 distinct A3s from as many genes [149,154–156]. The A3 

proteins have either one or two zinc-coordinating DNA cytidine deaminase domains (Z). 

Human A3A, A3C, and A3H possess one and human A3B, A3D, A3F, and A3G two Z-

domains, respectively, but only one Z domain is catalytically active in each A3 

[148,149,157,158]. 

The domain structure of A3s consists of a conserved sequence of characteristic motifs 

(α1-β1-β2/2′-α2-β3-α3-β4-α4-β5-α5-α6) [151,152]. At first A3G, then A3F, and other A3s 

were described as restriction factors because of their ability to inhibit the replication of 

Vif-deficient HIV-1 [150,151,153,159,160]. Based on the prevailing model of retrovirus re-

striction, A3s interact with viral components such as capsid, nucleocapsid, and nucleic 

acids to become encapsidated into nascent virions. Upon infection of target cells, the pas-

senger A3s in the viral core deaminate the negative strand cDNA formed during reverse 

transcription of the viral RNA. A3s induce hypermutation (C-to-T deamination) on this 

single-stranded DNA, thereby editing the coding viral DNA strand (G→A), leading to the 

inhibition of productive viral infection. Additional modes of inhibition of retroviruses are 

also well established that are not dependent on deaminase activity [161–163]. Based on 

cell-type and tissue, A3 expression is constitutive or inducible (e.g., by interferons). In 

general, A3s are expressed widely in hematopoietic cells [164–168]. 

During infection by lentiviruses (a group of retroviruses that includes HIV-1) the an-

tiviral activity of the host-species’ A3 is counteracted by the viral Vif protein. Vif directly 



Viruses 2021, 13, 504 7 of 22 
 

 

binds to A3 and recruits an E3 ubiquitin ligase complex for polyubiquitination and pro-

teasomal degradation of A3 [169–173]. This leads to intracellular depletion of A3s and 

allows the production of infectious viral particles that are mostly devoid of A3s. In addi-

tion, degradation-independent mechanisms such as Vif-mediated inhibition of A3G trans-

lation and A3G deaminase activity are also known [174–178]. Furthermore, retroviruses 

that lack a functional Vif-like gene have evolved different viral proteins and alternative 

countermeasures to prevent the antiviral activity of A3s. For instance, murine leukemia 

virus (MLV) glycoGag (a glycosylated translation product of the gag gene that is initiated 

by an upstream CUG codon (p80)), can antagonize mA3 and certain human A3s’ re-

striction activity [168,179–182]. GlycoGag protects MLV by providing sufficient stability 

to viral cores, thereby hindering mA3 access to the MLV-RT complex in target cells. Gly-

coGag was shown to protect the genomes of some MLV strains from mA3 deamination; 

however, the precise mechanism of this protection remains to be elucidated (reviewed in 

[162]). Along the same lines, the Bet accessory protein from several FVs was demonstrated 

to sequester A3s in a degradation-independent manner [134,136,183–185]. 

6. FV Auxiliary Protein Bet 

FVs encode two non-structural proteins, Tas and Bet, which are implicated in over-

coming host innate immunity. Whereas the transcriptional activator function of Tas and 

its role in inhibiting RNA silencing pathways have been known for some time [186], a 

dedicated function of Bet was not described until recently. The FV accessory protein Bet 

is a unique protein with no similarities to other viral or cellular proteins [187]. Presuma-

bly, Bet is highly expressed in infected primates, cats, and cows, since antibodies against 

Bet and Bet expression are constantly detectable and are considered to be of diagnostic 

value [49,108,188,189]. Bet is likely a phosphoprotein [188], but the modified residues and 

potential kinases are unknown. Bet is found in vast amounts in the cytoplasm of infected 

or transfected cells [190,191], and it may localize to the nucleus by its C-terminal NLS 

[192]. Bet may also be secreted via unconventional exocytosis (not dependent on ER-to-

Golgi secretory pathway) and enter uninfected cells [192]. While Bet is not required for 

FV infection in vitro in most assays [193–196], it has been proposed to regulate viral latency 

[192,197,198], establishing infection and maintaining persistence [199], to be involved in 

resistance to viral superinfection [200], and Bet of bovine FV (BFV) was characterized as a 

negative regulator of BFV replication [201]. In addition, FFV Bet is essential for infectivity 

and appears to have a role in viral particle release [202]. Evidence for an essential function 

independent of inhibiting antiviral A3 proteins was obtained by in vivo infections of FFV 

that expressed the feline immunodeficiency virus (FIV) Vif protein instead of Bet [203]. 

Such chimeric viruses replicated in feline A3-expressing cells, but were attenuated in vivo 

in cats. 

7. Structure and Function Prediction of Bet 

The extent of protein sequence homology of Bet is low among FVs [43,48,89]. The Bet 

proteins from PFV, SFVs, and FFV are rather diverse and share only 6.7% of amino acid 

identity and 64% of similarity. PFV and SFV Bet proteins from chimpanzee and macaque 

have a higher identity and similarity, i.e., 32% and 79%, respectively (Figure 2). 
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(B) 

Figure 2. The diversity of Bet proteins. (A) Phylogeny of FV Bet amino acid sequences. A neighbor-joining tree based on 

Bet protein sequences was calculated by using the Maximum Composite Likelihood method with a bootstrap test of 10,000 

replicates. Bet from BFV, FFV, SFVs (from gorilla, chimpanzee, macaque, Japanese macaque, AGM, and Guenon); HIV-1 

Vif served as the out-group. Bar, 10% sequence variation. Accession numbers are provided for each sequence in the 

bracket. Note that we could not include Bet from other exogenous and endogenous FVs due to the lack of sequence de-

scription. (B) Multiple sequence alignment of Bet from FFV, PFV, and SFVs. Amino acid sequence identity and similarity 

among these Bet proteins are 6.7% and 64%, respectively. Additional sequence alignment leaving FFV Bet exhibited 32% 

identity and 79% similarity of primate FV Bet sequence (alignment not shown). Sequence alignment was performed by 

Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 6 December 2020). The alignment file was then 

submitted to ESPript 3.0 [204] (espript.ibcp.fr) to calculate the similarity and identity of residues between these proteins 

and to represent the multiple sequence alignment. Six conserved motifs in Bet sequences are marked by boxes, from which 

four red-colored motifs were experimentally studied due to high sequence conservation, as reported before [89]. 

Despite recent advances in ab initio protein structure prediction [205], template-based 

structure modeling is still considered to yield high-quality structural models if appropri-

ate template structures can be identified [206]. However, using the full-length sequences 

of the PFV, SFV-macaque, SFV-chimpanzee, and FFV Bet proteins, none of the template-

based methods TopModel [206–209], I-TASSER [210–212], Maestro Homology Modelling 

[213], or SWISS-MODEL [214,215] yielded structural models of sufficient quality. This is 

probably due to the lack of templates with a high enough sequence identity; e.g., the best 

template found by I-TASSER for the SFV-chimpanzee Bet protein was 2OCW_A, with an 
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identity of 12.4%. Predicting structural models ab initio based on the full sequences with 

ROSETTA3 [216] or the ROBETTA webserver [217] did not yield results of sufficient qual-

ity either. Finally, modeling the full-length sequences with constraints from coevolution-

ary information is not possible either because the GREMLIN webserver [218–220] or Blast 

[221] searches did not identify enough homologous sequences for reliably detecting resi-

dues that coevolved. 

Therefore, we decided to predict domain boundaries within the sequence of the SFV-

chimpanzee Bet protein sequence with TopDomain [222] (Figure 3A) and subsequently 

modeled the two domains using the ROBETTA webserver. For each domain, ROBETTA 

generated five models. The best model (Figure 3B) was then chosen based on the lowest 

Cα atom RMSD between the generated models and the corresponding ab initio modeled 

domain of PFV Bet. This consensus approach was also validated by TopScore [223] in that 

domains with the lowest RMSD also have the lowest TopScore compared to the other four 

models. For the N-terminal domain, the overall TopScore is 0.47 and for the C-terminal 

one 0.45, indicating a moderate quality of the models. In the N-terminal domain, the hel-

ical part of the structure has low local TopScores, indicating good quality, but the N-ter-

minal loops high local TopScores, indicating low quality. In the C-terminal domain, the β-

strands have low local TopScores, indicating good quality, but helices and loops from res-

idues 358–403 have high local TopScores, indicating low quality. 

 

Figure 3. Molecular model of SFV-chimpanzee Bet protein domains. (A) Domain boundaries pre-

dicted by TopDomain [222]. The blue line indicates the split of the sequence into two domains (be-

tween residues 164 and 165), which were subsequently modeled separately. (B) Domains are shown 

in cartoon representation. The coloring indicates the quality assessment of the models on a per-

residue level by TopScore [223]. Blue: TopScore = 0.1 (high structural quality), red: TopScore = 0.8 
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(low structural quality). The dotted line represents the connection between domain 1 (left, residues 

1–164) and domain 2 (right, residues 165–490). Structural models were generated with ROBETTA 

[217]. The mutual spatial arrangement of both domains is unknown. (C) Overlay of the C-terminal 

domain and PDB ID 5M0I_C. The interaction region with mRNA is marked in black. The C-terminal 

domain is colored as in panel B, 5M0I is colored in orange. (D) Overlay of the N-terminal domain 

and PDB ID 6PQ8_A. The interaction region with chain B of 6PQ8 is marked in black. The C-terminal 

domain is colored as in panel B, 6PQ8 chain A is colored in yellow, 6PQ8 chain B is colored in blue. 

For the N-terminal domain, the DALI web server [224] identifies the ATP-binding 

subunit of the KdpFABC complex (6HRA_B) as the closest structural homolog (Z-score = 

3.4, identity = 3%, RMSD = 4.5 Å), but the overlaying part consists of transmembrane hel-

ices. The second best hit (6IKN_A) is also a membrane protein, which we deem inapt for 

a viral Bet protein. The third best hit (6W2W_A) is a synthetical protein. The fourth best 

hit (5M0I_C, Z-score = 2.9, identity = 13%, RMSD = 4.3 Å) is part of the ASH1 mRNA trans-

portation complex [225] (Figure 3C), from which a potential nucleic acid interaction region 

can be derived. For the C-terminal domain, the first five hits (4QL0_A, 7BTX_L, 4C00_A, 

3CSL_A, 3KVN_X; Z-scores 4.8 to 4.4) from the DALI webserver are structures with β-

sheet barrels, although the predicted domain structure does not form a barrel. The sixth 

hit is 6QP8_A (Z-score = 4.4, identity = 3%, RMSD = 4.5 Å) (Figure 3D), which is part of a 

signaling cascade and engages in protein–protein interactions [226], from which a poten-

tial interaction interface can be derived. The results suggest that the N-terminal domain 

may be involved in DNA or RNA binding and the C-terminal one in the recruitment of 

another protein. 

Due to the lack of coevolutionary information for residue pairs between the domains, 

as tested using HDock [227], and the uncertainty of protein–protein docking of unbound 

structures [228], we refrained from modeling the protein’s quaternary structure based on 

the two domains. 

As for the other FV Bet proteins, we expect that the PFV Bet and SFV-macaque Bet 

proteins have structures similar to the SFV-chimpanzee Bet protein due to sequence iden-

tities of 86.2% and 33.14%, respectively (Figure 2). The FFV Bet protein is sequentially 

more distant, as indicated that it is not part of the same Pfam [229] entry (PF03274) as the 

other three Bet proteins. 

8. FV Bet-APOBEC3 Interaction: A Distinct Retroviral Strategy to Protect Viral Ge-

nomes without Inducing Degradation of APOBEC3s 

Using FFV Bet and cat CRFK cells, our study in 2005 pioneered the role of Bet in 

counteracting feline A3 (feA3)-mediated retroviral inhibition [134]. FFV permissive CRFK 

cells displayed a nonpermissive phenotype when infected with Bet-defective FFV [202], 

and further investigations uncovered A3-mediated genome editing of FFVΔBet [134]. Of 

note, in contrast to lentiviruses, the most distinguishing feature is that the deamination 

activity on viral substrate DNA already occurs in FFV-producing cells, so that edited-pro-

viral DNA genomes are present in released virions. Interestingly, the absence of Bet from 

FFV genomes resulted in strongly decreased FFV titers, diminished particle release, and 

attenuated Gag processing, in addition to pronounced genome editing by A3 [134]. Fur-

thermore, FFV Bet binding to feA3, but not human A3G, was observed, indicating a spe-

cies-specific interaction of these proteins. Whereas feA3 was encapsidated into the virions, 

Bet was not. This study and follow-up studies further confirmed the specific interaction 

of FFV Bet with feA3s, which results in A3 sequestration in cells, probably as an “immo-

bile complex”, without triggering proteolytic degradation of feline A3s 

[89,134,158,203,230]. Like FIV Vif, which binds to the different feA3s and promotes their 

degradation, FFV Bet interacts with all feA3s, independent of whether they restrict the 

FFV or not [230]. In contrast to Bet-feA3 binding, only some feA3s that contain a Z2 do-

main (feA3Z2 and feA3Z2-Z3) bind to FFV Gag. This Gag–A3 interaction is found to be 
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crucial for feA3 incorporation into progeny virions and subsequently for restriction 

[230,231]. 

Computational analysis of Bet sequences from BFV, EFV, SFV, FFV, PFV, and SloEFV 

identified six conserved motifs in the Bel2 domain of Bet [89]. The entire FFV Bel2 domain, 

but not the N-terminal Tas region, is essential for feA3 binding and inactivation [89]. Alt-

hough the Bel1/Tas motif seems dispensable, intriguingly, it increases the stability of Bet. 

Hence, both Tas and Bel2 regions are needed for efficient counteraction of feA3 [89]. In 

addition, this study indicated that the Bel1 region and C-terminal 22 residues of the FFV 

bel2/bet ORF can be exchanged by related FVs, such as PFV, even though PFV Bet does 

not bind and counteract feA3Z2. A mechanism for FFV Bet activity has not been identified, 

but an interaction of FFV Bet and feline A3s was demonstrated to be necessary [89,230]. A 

recent investigation using a cat model and a chimeric FFV system suggests that FIV Vif 

can replace Bet to counteract feA3 in cell lines and animals. This replacement yielded rep-

lication-competent chimeric FFVs that replicated and spread in cell culture but were at-

tenuated in vivo [203]. These findings underscore the essential requirement of Bet and pos-

sibly additional functions other than A3 antagonism in vivo for productive FFV infection. 

Notably, two earlier studies using the PFV-based viral vector system reported con-

troversial data regarding the function of Bet as an A3G antagonist [130,136]. Russell et al. 

[136] demonstrated that human A3G and A3F proteins inhibit the infectivity of PFV due 

to a specific Gag–A3 interaction and induce cytidine deamination in the PFV genomes. 

They also demonstrated binding of PFV Bet to human A3F and A3G (and rescue of PFV), 

but not to mA3. Additionally, PFV Bet and Bet from AGM FV could rescue the infectivity 

of PFVΔBet and Vif-deficient HIV-1 in the presence of AGM A3G by blocking the pack-

aging of A3G into HIV-1 virion particles [136]. Like FFV Bet, these Bet proteins as well did 

not deplete A3 levels in viral producer cells (Figure 4). In contrast to this report, 

Delebecque et al. [130] found that A3G and A3F can effectively restrict PFV by their de-

aminase function, independently of Bet. They also found that in addition to human A3G 

and A3F, A3G from chimpanzee, AGM, and mA3 all restricted FV replication in cell cul-

ture irrespective of Bet, whereas human A3B and A3C did not inhibit PFVΔBet. Im-

portantly, these authors could not observe a Vif-like activity of Bet, i.e., FV Bet did not 

rescue HIV-1ΔVif in the presence of human A3G, but this study did not investigate Bet-

A3 interaction [130]. 

 

Figure 4. Different modes of suppression of A3 viral incorporation by lentiviral Vif and FV Bet. 

Schematic representation of APOBEC3 (A3) counteraction strategies developed by lentiviral Vif and 

foamy viral Bet proteins. While Vif binds and triggers proteasomal degradation of A3 proteins by 

recruiting an E3 ubiquitin ligase complex (left model), Bet differs from Vif in that it specifically 
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interrupts the self-association of A3s, thereby diminishing their cytosolic solubility without induc-

ing their degradation (right model). Either way, these retroviral accessory proteins overcome A3-

mediated inhibition of viral infectivity by depleting/sequestering them away from progeny virions. 

For simplicity, A3-Vif and A3-Bet complex formation are depicted as two monomers interacting 

with each other; homodimers of Vif, A3, and Bet are not shown. Only RNA (purple line)-dependent 

A3 oligomers or A3-A3 dimers are illustrated to indicate for viral incorporation and as a target of 

Bet inhibition. 

To learn more about mechanistic aspects and functional consequences of Bet binding 

to A3s, our lab has conducted two independent studies involving A3C and A3G. Both 

have reported a direct physical interaction of Bet with A3C and A3G, independent of 

RNA, which traps the A3s in the cytoplasm rendering them unavailable for incorporation 

into progeny virions [183,184]. The Bet-dependent counteraction of A3-mediated re-

striction was reproduced using SIV-based reporter vectors, in addition to PFV vectors. 

Although PFV Bet displayed inhibitory activity against a range of simian A3s, it failed to 

interact with rhesus A3C [184]. Interestingly, the mapped binding site of Bet in A3C and 

A3G was found to be a region that is involved in A3 homodimerization or multimeriza-

tion. The PFV Bet interactions with A3s thus impair protein self-association of A3s, with-

out inducing their proteasomal degradation [183,184]. RNA-dependent oligomerization 

of A3s is crucial for their packaging into nascent HIV-1 virions [232], but it has not been 

investigated in the FV system. While Bet targets the nuclear fraction of A3C to the cyto-

plasm, it is unknown whether Bet drags A3C into an insoluble complex or aggregates to 

keep them immobile [183]. However, it was demonstrated that Bet sequesters A3G in im-

mobile complexes and abrogates the cytosolic solubility of A3G by inhibiting A3G–A3G 

interaction [183]. Notably, Bet did not inhibit the catalytic activity of A3G, but a direct 

interaction of purified A3G and Bet proteins was demonstrated [183]. These studies indi-

cate a similar mechanism of inhibition of A3s by Bet, acting mainly when the Bet expres-

sion is sufficiently high. 

Additionally, our recent study suggested that Bet can counteract A3B without de-

creasing the steady-state level of A3B [185]. Intriguingly, Bet-A3B complex formation led 

to the shifting of nuclear A3B to the cytoplasm, therefore affecting its cellular localization. 

Another salient feature of Bet binding to A3B and A3G was studied by velocity sedimen-

tation as these A3 ribonucleoproteins are found as RNA-bridged high-molecular-mass 

(HMM) complexes in the cell [183,185,232–234]. Bet prevented the HMM complex for-

mation of A3G and A3B. Notably, Bet interaction with A3G was clearly demonstrated to 

be RNA-independent [183,185]. Thus, it would be interesting to understand the impact of 

Bet on other A3 HMM complexes such as those including A3F and A3C that are either 

insensitive to RNase or critically stabilized by RNA molecules [235–237]. Because nuclear 

localization of A3B is a primary cause of and essential for cancer mutations [238–243], this 

study provides a perspective of using Bet-like proteins to protect host genomes from A3-

mutations that cause tumor progression and therapy resistance by targeting nuclear A3B. 

9. Perspectives, Open Questions, and Challenges 

Several investigations identified Bet as a countermeasure to protect viruses from A3s 

by blocking packaging into progeny virions, a function reminiscent of lentiviral Vif pro-

teins. The reverse transcription complex of FV is not well described, and it is unknown 

how the antiviral A3 proteins get co-packaged in such complexes. Additional work focus-

ing on A3 interactions with different FV Gag, viral genomic RNA, and DNA is needed to 

confirm the role of A3 in producer and target cells using both authentic foamy-viral as 

well as lentiviral systems. 

There has been impressive progress in biochemical and structural understanding of 

A3 and HIV-1 Vif, and molecular studies of purified Bet proteins remain for future work. 

Likewise, A3 binding motifs of Bet were not comprehensively studied; while the physical 

interaction of Bet-A3 and Bet binding regions on A3s were demonstrated, we do not know 
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much about the key regions of Bet involved in these interactions. Indeed, structural inves-

tigations on Bet will be important, but are complicated by its folding/stability issues (per-

sonal communication, see above, Bet structure and function prediction section). Whereas 

it was demonstrated that Bet impairs the cytosolic solubility of A3s and drags A3s into 

insoluble complexes in the cell, a direct/indirect function of Bet in shielding viral DNA 

during RT (late) from A3s in target cells has not been proposed. Additionally, nuclear-

localized A3A, A3B, and A3C may impede Gag tethering, genome integration, and tran-

scription of Tas/Bet or LTR-driven viral genes. These open questions and the discovery of 

currently unknown functions of Bet identification await future research. 
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