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ABSTRACT: Drugs containing thiazole and aminothiazole groups are known to generate
reactive metabolites (RMs) catalyzed by cytochrome P450s (CYPs). These RMs can
covalently modify essential cellular macromolecules and lead to toxicity and induce
idiosyncratic adverse drug reactions. Molecular docking and quantum chemical hybrid DFT . .
study were carried out to explore the molecular mechanisms involved in the biotransformation Epoxidbtion ® N.(] Oxginidine
of thiazole (TZ) and aminothiazole (ATZ) groups leading to RM epoxide, S-oxide, N-oxide, N\X N4 3R
and oxaziridine. The energy barrier required for the epoxidation is 13.63 kcal/mol, that is T i

lower than that of S-oxidation, N-oxidation, and oxaziridine formation (14.56, 17.90, and
20.20, kcal/mol respectively). The presence of the amino group in ATZ further facilitates all
the metabolic pathways, for example, the barrier for the epoxidation reaction is reduced by
~2.5 kcal/mol. Some of the RMs/their isomers are highly electrophilic and tend to form Cytochrome P450
covalent bonds with nucleophilic amino acids, finally leading to the formation of metabolic

intermediate complexes (MICs). The energy profiles of these competitive pathways have also

been explored.

S-Oxidation ~ N-Oxidation

5
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B INTRODUCTION Mizutani et al. reported the formation of toxic metabolites
from thiazole and thiabendazole in mice.'”~*" Kalgutkar and

Electrophilic reactive metabolites (RMs) may be formed
co-workers demonstrated the bioactivation of a 2-amino-4-

during the biotransformation of drugs, which can covalently

modify the cytochrome P450s (CYPs) enzymes or essential arylthiazole functional group in human liver microsomes and
cellular macromolecules, that way interfering with biological characterizezczl its GSH adducts using LC-MS/MS and NMR
function and causing drug—drug interactions or idiosyncratic techniques.”™ Lakshmi et al. reported the mechanism for the
adverse drug reactions.' ™" Certain chemical functional groups formation of a thioether conjugate from 2-amino-4-(S-nitro-2-
are implicated in the generation of toxic RMs and are declared furyl)-thiazole.”>** Burnett and co-workers reported the
as structural alerts.””~" Aromatic five-membered heterocyclic formation of an N-oxide-S-oxide metabolite from 4,5-dimethyl
rings such as furan, thiophene, thiazoles, aminothiazoles, and thiazole.”” Kalgutkar et al. found that a thrombopoietin
benzothiazoles come under scrutiny because these species can receptor agonist with a thiazole ring”> endured amide
lead to toxicity during biotransformation.">”?~"* hydrolysis followed by the activation of the thiazole ring,
Compounds carrying thiazole (TZ) and aminothiazole which is prone to a nucleophilic attack at the C® center such
(ATZ) groups gained significant interest in medicinal that the oxidation of 2-aminothiazole leads to covalent
chemistry, due to their frequent occurrence in many modification of the cytochrome. Subramanian et al. studied
biologically active molecules.!>'* Figure 1 shows the 2D the cytochrome-mediated epoxidation of 2-aminothiazole-
structure of important thiazole ring—containing drugs (a based AKT inhibitors.2°
comprehensive list is provided in Table SI and Figure SI, Although the only structural difference between meloxicam
Supporting Information (SI)). A wide variety of pharmaco- and sudoxicam is the presence of an additional methyl group

logical activities (antineoplastic, antidiabetic, anticonvulsant,
antimicrobial, and anti-inflammatory agents) are exhibited by
these compounds. A few thiazole containing drugs are also
reported for antiviral effects including anti-COVID.">'® The
thiazole ring is also being considered as a structural alert in
drug discovery research. Several thiazole carrying drugs were
reported for their toxicity (e.g, sudoxicam, thiabendazole,
ritonavir). For instance, sudoxicam undergoes biotransforma-
tion by epoxidation followed by a ring-opening reaction,
leading to the formation of thioamides, which are known to
form covalent adducts.””'”"®

on the CS-position of 2-carboxamidothiazole scaffold in
meloxicam, a significant difference in their toxicological profile
in humans was noticed.'”'”*”** Hobbs and Twomey studied
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Figure 1. Representative list of drugs carrying thiazole functional groups, which are reported to undergo metabolic reactions at the thiazole group.

the metabolism of sudoxicam in rat, monkey, and dog and
identified thiohydantoic acid and thiourea resulting from
thiazole ring scission of sudoxicam using mass spectral
analysis.”” Obach et al. performed in vitro metabolism studies
on sudoxicam and meloxicam and reported that the CYP
metabolism led to the formation of a thiazole scission product
acyl thiourea, which is a protoxin.'”

CYPs are membrane-bound proteins, containing heme as a
cofactor, which are involved in an oxygen atom transfer to the
xenobiotic via a complex catalytic cycle. CYPs are the major
oxidizing enzymes in affecting the chemistry of TZ as reported
in Figure 2. However, several detailed questions relating to
these suggested RMs have not yet been addressed. Figure 2
shows the possible reaction pathways of a TZ ring (mediated
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Figure 2. Biotransformation pathways reported for drugs carrying
thiazole rings.
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by CYPs), which can lead to the biotransformation —causing
toxic side effects. Although several studies have been carried
out to explore the mechanisms leading to toxic products from
thiazole-containing compounds using experimental methods,
exact details on how cytochrome-mediated toxicity originates
from these species are still missing. To identify the common
reaction mechanisms associated with the biotransformation of
TZ compounds and to obtain atomic-level details as well as to
explore the energy profiles associated with the metabolic
reactions, quantum chemical calculations were performed on
the model thiazole ring. The four reactions considered in
Figure 2 were explored to obtain structures of the
intermediates, transition states, and metabolic intermediate
complexes along the reaction pathways. The energy profiles
were established, and the electronic characteristics of all of the
species on the reaction pathway were explored. Recently, we
reported quantum chemical studies on the mechanism based
inhibition (MBI) originating from nitroso,’ epoxides,31 S-
oxide,”>™** carbene,” and other functional groups by CYPs,
which are associated with various drugs. In this study, quantum
chemical analyses on the biotransformation of TZ (and ATZ)
against Compound I (Cpd I) are reported.

B METHODS

Molecular Docking. A library of 120 thiazole ring containin:
drugs were extracted from the DrugBank database (Table S1, S1).%
Eighty-four compounds from this list were subjected to molecular
docking based on their molecular mass. The preparation and
minimization of the thiazole ring containing compounds were
performed using the LigPrep module®” with the OPLS3e force
field*® For molecular docking analysis, crystal structures of the
CYP3A4 (PDB ID: SVCC), CYP2C9 (PDB ID: SASI), CYP2C19
(PDB ID: 4GQS), CYP2D6 (PDB ID: 3TBG), and CYP2E1 (PDB

https://doi.org/10.1021/acs.chemrestox.0c00450
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ID: 3T3Z) with high resolution were utilized. The protein structures
of CYP isoforms were preprocessed using Protein Preparation
wizard.*® Hydrogen atoms were added and right bond orders were
assigned to all bonds. An oxygen atom is added to the Fe center of
heme group (i.e., Fe(IV) state at the heme center) in the active state,
and appropriate charges are added to Fe, O, N, and S atoms. Then,
molecular docking studies were performed using Glide software in the
Schrodinger suite of programs.** The Receptor Grid Generation
module of Glide was used to generate grid for docking purposes, the
outer cubical grid was extended up to 20 A in the vicinity of Fe-
porphyrin (active site of CYP’s), while maintaining the inner box size
at the default value (10 X 10 X 10 A%). The highest ranked poses were
visually inspected and analyzed for their interactions with active site
residues as well as with the Fe=O center of the heme. The OPLS3e
force field was employed for identifying and ranking the docking
poses.

Quantum Chemical (QC) Methods. Quantum chemical
calculations using the Gaussian 09 suite of programs were carried
out to understand the metabolism of TZ, ATZ and the covalent
adduct formation from the RMs of these species, leading to MBI of
CYPs.*! To mimic CYPs, the model species Cpd I was used as the
model oxidant,"”** which is an iron (IV-oxo) radical cation with
heme-porphine with SH™ at the axial position. This model has been
accepted by various scientific groups to provide reasonably accurate
energy estimates for CYP-catalyzed metabolic studies.*>™* For this
study, the multistate reactivity (both doublet and quartet states) of
Cpd I was considered. The geometry optimization of all of the
intermediates on the metabolic path of TZ leading to MBI were
performed using the hybrid density functional (DFT) method B3LYP,
with a basis set 6-31+G(d)**>* (except Fe) and LanL2DZ>? basis set
on the Fe center. The optimization of transition states were
performed using a guess initial structure using the Berny optimization
method. The frequency calculations were carried out using the same
method to characterize the stationary points as minima or transition
states (as first-order saddle points with one imaginary vibrational
mode). To mimic the polarity of the CYP active site cavity (dielectric
constant (¢) = 5.69, close to chlorobenzene), single point calculations
were employed using a self-consistent reaction field (SCRF) method
IEFPCM (integral equation formalism variant of the polarizable
continuum model)** at the B3LYP/6-311++G(d,p) level on the
optimized structures. The absolute energies obtained using this
method were further corrected with the gas phase Gibbs energy
correction values. The electrophilicity analysis®>® was performed to
estimate the global and local electrophilicity indices of all important
reactive metabolites. The electronegativity (¥), hardness (17), chemical
potential (), global electrophilicity (@), and global nucleophilicity
(N) are calculated using eqs 1, 2, 3, and 4, respectively. The local
Fukui functions for electrophilic (ff) and nucleophilic (f;) attack
using charges on each atom g are estimated by eqs S and 6. The
natural bond orbital (NBO)*” population analysis was used for N, N
— 1, and N + 1 number of electrons on the relevant species. The local
electrophilicities and local nucleophilicities are estimated by using eqs
7 and 8, respectively. The reliability of the global and local
nucleophilicity values to explain the observed chemistry is much
weaker than that of global and local electrophilicity values. However,

in this particular work it is noted that the results are partially useful
(Table 2).

¥ = electronegitivity

¥ = _ Somot€Lumo ;' €nomo = energy of HOMO orbital
2
€ umo = energy of LUMO orbital
(1)
N = €umo — €gomo; N = hardness (2)
2 2
o=t % ;@ = global electrophilicity
2n 24 (3)
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N = 1 ;N = global nucleophilicity
) 4)
5= N+ ) - g (V)
fk+ is the Fukui function for nucleophilic attack (5)
£ = ) = (N - 1);
f, is the Fukui function for electrophilic attack (6)
o, = a)fk+ ;@ = local electrophilicity (7)
Ny =of_ ; N =local electrophilicity (8)

Where, qi(N), (N + 1), and q(N — 1) respectively are partial
atomic charges at atom k in neutral, anionic, and cationic states of the
molecules.

B RESULTS AND DISCUSSION

Site of Metabolism Studies Using Molecular Docking
Analysis. The molecular docking analysis of a library of 84
compounds with a thiazole ring were carried out to identify the
preferred site of metabolism (SOM) and orientation at the
CYP active site of these compounds, screened against five CYP
isoforms CYP3A4, CYP2C9, CYP2C19, CYP2D6, and
CYP2E1l. Among the 84 ligands chosen, the docking poses
of only 52 substrates have shown SOM at the thiazole ring at
any of the four possible sites, i.e., epoxidation, S-oxidation, N-
oxidation, and oxaziridine formation (Table 1).

Table 1. Number of Thiazole Containing Substrates Which
Predict Preferred Oxidation Path (Using Molecular
Docking Analysis) against Five CYPs”

no. of compounds predicted for metabolic reaction

S- N- oxaziridine
epoxidation  oxidation oxidation formation
CYP3A4 48 32 2 2
CYP2C9 4S5 35 3 1
CYP2C19 46 35 1 2
CYP2D6 41 40 2 1
CYP2E1 38 44 2

“These results are as per the 1st ranked molecular docking pose. The
total number of substrate is 84.

Based on the highest ranking pose, it can be concluded that
the majority of ligands showed SOM at the sulfur atom and the
unsaturated center of the thiazole ring. For instance,
compounds such as ritonavir,”**? cobicistat,”’ and sulfathiazole
showed an SOM at the unsaturated bond of the thiazole ring as
their top ranked pose. Cambendazole, pramipexole, and
famotidine showed an SOM at the sulfur atom within the
active site cavity of CYPs. At the same time, clomethiazole
showed a nitrogen atom pointed toward Fe=O, and it is
known that clomethiazole forms an N-oxide metabolite in
CYP2E1 and CYP3A4 (Figure 3).00% A few compounds
showed the SOM at both epoxidation and S-oxidation sites—
e.g. thiabendazole, vosaroxin, and varlitinib.

In CYP3A4 and CYP2E], it is well-known that the active site
is highly hydrophobic due to six phenylalanine residues (108,
213, 215, 220, 241, and 304), isoleucine (120 and 301), and
valine (240) residues in CYP3A4 and five phenylalanine
residues (106, 116, 207, 298, and 478) and leucine (210)
residues in CYP2EL. The hydrophobic groups are majorly

https://doi.org/10.1021/acs.chemrestox.0c00450
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Figure 3. (A) Docking poses of ritaverin in CYP3A4 active site favoring epoxidation and (B) docking pose of clomethiazole in the active site of

CYP2E1 favoring N-oxidation.

located at the dome region of CYP3A4® and CYP2E1,**
which directs the orientation of thiazole toward the heme Fe=
O center. Alternatively, in the case of CYP2C9, the hydrophilic
residues arginine and lysine control the docking pose, directing
the thiazole ring toward the heme prosthetic group.

The molecular docking analysis showed an overall success
rate of the order of 60%. The individual success rates with
reference to each type of reactions of thiazole metabolism
reactions are epoxidation (58%), S-oxidation (34%), N-
oxidation (8%), and oxaziridination (0%). These results are
indicating that it is possible to distinguish the preferred
metabolic reaction of the thiazole containing compounds after
successfully predicting the SOM. The molecular docking
analysis helps in identifying which enzyme residues govern the
orientation of ligand inside the active site rather than nailing
down the actual SOM because the possible SOMs are adjacent
to each other. These results are only partially satisfactory,
incorporating electronic effects if the study is warranted.
Performing induced fit docking studies and QM/MM analysis
is expected to improve the predictive power. These suggested
methods are currently out of reach for routine analysis. Thus,
we have taken up detailed quantum chemical analysis on small
model systems to estimate the energy profiles along the four
oxidation paths (Figure 2).

B QUANTUM CHEMICAL STUDIES

Formation of Reactive Metabolites. Epoxidation.
Epoxidation is one of the important metabolic reactions in
drug molecules containing unsaturated functional units such as
alkene® ™" and cycloalkene,”””* thiophene,'"**7*7%!
furan,*"%>%% thiazole,' 171218485 and pheny1.86 Several
experimental and theoretical studies on epoxidation reactions
catalyzed b CYPs were re-
ported, S5/66-69848587-89,10,11,2631,3447,6665 Geveral research
groups reported the epoxidation reaction at aliphatic and
alicyclic unsaturated centers using quantum chemical meth-
0ds.*#0*¢771L%0 The mechanism of epoxidation reaction
involves two steps, an initial C—O bond formation (via C=
C bond activation step) followed by ring closure. In our
previous studies, we have elucidated several vital features
involved in the epoxidation process of furan’' and thiophene®*
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rings using Cpd I as an oxidant and also investigated the MBI
of the epoxide metabolites. The epoxidation of TZ using
quantum chemical analysis is highlighted in this section.

The epoxidation reaction happens at the C*=C® bond of
the TZ ring. Since epoxidation involves two distinct phases
(C=C activation phase, epoxide formation phase),””””"** the
initial nucleophilic attack can happen, in 6principle, at either C*
or C°. The local nucleophilicity value®*° at the C® center (N}
—0.47 eV) is markedly larger than that at the C* center (Nj
—0.10 eV) (Table 2). Thus, the reaction pathway has been

Table 2. Local Nucleophilicity (N} ) Values of TZ and ATZ*

atom N; of TZ N of ATZ
S (1) 0.1 0.18
c2 -0.29 0.09
N (3) —0.40 —0.58
C4 —0.10 —0.09
CS —0.47 —0.60

“The values were obtained using natural population charge analysis.

explored with reference to an initial Sy2 reaction originating
from the C° center. In the transition state *TS-E (Figure 4),
the C>—O distance (1.94 A) is much shorter than the C*~O
distance (2.62 A). The estimated energy barrier for direct
oxygen transfer (DOT) reaction at the C° center is 13.63 kcal/
mol via *TS-E on the doublet potential energy surface (PES)
(Figure 4) and leads to the formation of intermediate radical
complex ’I-E. For comparison, the energy barrier for the
epoxidation of ethene, furan, and thiophene by Cpd I was
reported to be 14.90,°” 12.33,>! and 15.71 keal/mol.** In the
I.E complex, the Fe—O interaction (2.54 A) continues to
exist. The epoxide product complex *PC-E is 25.42 kcal/mol
more stable than the starting species, indicating that the
epoxidation reaction is an exergonic and a thermodynamically
favorable process. ?PC-E shows weak Fe—O electrostatic
interaction with a distance of 2.37 A. Breaking of this bond
leads to the formation of epoxide metabolite (M1), which is
endergonic by 1.41 kcal/mol (see SI, Figure SS, for
corresponding energy profile using quartet state of the Cpd
I). On the doublet PES, the Sy2 reaction progresses due to the

https://doi.org/10.1021/acs.chemrestox.0c00450
Chem. Res. Toxicol. 2021, 34, 1503—1517


http://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.0c00450/suppl_file/tx0c00450_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig3&ref=pdf
pubs.acs.org/crt?ref=pdf
https://doi.org/10.1021/acs.chemrestox.0c00450?rel=cite-as&ref=PDF&jav=VoR

Chemical Research in Toxicology

pubs.acs.org/crt

Epoxidation

1.45
237 | 126.1
222 | 175.7
e
TS-E PC-E
S-Oxidation
206 < 153 & >
122.6 v
175 . 118.1
(=8 2PS= S8 — 88— D g 9
2.38 168.0 2.23 | 176.0
— <
TS-S PC-S
N-Oxidation
1.95/£
1_70}) 121.9
" =P WSP=0S0—
2.34 5166.5 2.24| 173.0
— —
TS-N PC-N

Oxaziridine Formation

1.40 /
227 ‘: 123.0
2.22 174.5

<«

PC-A

Figure 4. Optimized geometries of transition states (TS-E, TS-S, TS-
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the various reaction pathways of thiazole. The values are on the
doublet potential energy surface. All bond lengths are in angstroms
(A), and bond angles are in degrees (deg).

transfer of electron density from the C*—C® 7z orbital to the
m*orbital of the Fe—O bond (Figure 6a).

S-Oxidation. S-Oxidation is one of the important reactions
in the drug metabolism and detoxification by CYPs in the liver.
Studies on S-oxidation reactions have been reported
extensively using experimental and theoretical approaches
and suggested a concerted Sy2 mechanism.”’~* To under-
stand the S-oxidation reaction, quantum chemical exploration
was extensively carried out using different model oxidants
(H,0,, HOONO, Cpd 1) 7*#*521719% oy 3 wide range of
aliphatic sulfides that differ in the length of the alkyl chain and
range from a hydrogen atom to an ethyl Agroup,%’%’w’lm_107
cyclic sulfides,”** and aromatic sulfides.”

Structure *TS-S (Figure 4) represents the transition state of
the S-oxidation reaction modeled with TZ with Cpd I. In >TS-
S, the S—O bond length is 2.06 A, which is slightly smaller than
the reported value on dimethyl sulfide (2.22 A),”*
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thiazolidinedione (2.16 A),** and thiophene (2.15 A).** The
energy barrier required for the S-oxidation reaction in TZ is
17.90 kcal/mol via transition state *TS-S (Figure S). This
barrier is higher than that for the reaction of thiophene (14.75
kcal/mol)** and thiazolidinedione (11.59 kcal/mol).** In the
product complex *PC-S, the S=O bond is formed and the
Fe—O bond is almost broken. In 2PC-S, the sulfur atom of
sulfoxide metabolite (M2) adopts strong pyramidalization
(sum of angles around sulfur ~310.8°). The formation of the
intermediate *PC-S is favorable by 4.16 kcal/mol on the
doublet PES of Cpd I compared to the starting species.
Further, M2 is less stable than M1 by 24.26 kcal/mol. The MO
analysis (Figure 6b) shows that the S-oxidation in the doublet
state is facilitated by the electron density donated preferentially
from the p-lone pair electrons (ng) of sulfur atom to the 7*,,
orbital of the Fe—O bond.

N-Oxidation. N-Oxidation is also an important reaction in
drug metabolism to detoxify drugs by CYPs. Several
experimental and theoretical studies were reported on N-
oxidation reactions.”®'%*~"'° Quantum chemical studies on the
mechanism of N-oxidation using model oxidant Cpd I were
performed extensively for primary,””""'~""> secondary,'"® and
tertiary amines,”®'**~"%" "¢ hydrazine,"""!"”!"® and aromatic
amines,"'>"'?"*% and the reported barriers for N-oxidation are
in the range of 10—20 kcal/mol. In the case of TZ, the
nucleophilicity originating from the N-center is less than that
of the C° center (Table 1). Only a few experimental studies
reported N-oxidation originating from the TZ ring;*” in these
cases, the structural details of the N-oxide metabolites were not
provided.

For comparison purposes, quantum chemical studies on the
N-oxidation pathway were also performed. The N-oxidation
reaction of TZ leads to the generation of a thiazole-N-oxide
product (PC-N) (Figure 4). The N-oxidation process also
involves a DOT mechanism, in which an oxygen atom is
transferred to the N-center of TZ from Cpd I via a transition
state *TS-N (Figure 4). This N-oxidation reaction process
requires an energy barrier of 20.20 kcal/mol on the doublet
state PES via *TS-N (Figure S). In the N-oxidation reaction,
the electron density is donated from the nitrogen lone pair
orbital into the 7* orbital of Fe—O. In the product complex
2PC-N, the Fe—O bond is almost broken. >PC-N is 16.29 kcal/
mol exergonic on the doublet PES of Cpd I This is also
mirrored in the transition state geometries, where an early
(®>TS-N) (O—N distance of 1.95 A) transition state is found for
the doublet states. The N-oxide metabolite M3 is much less
stable than that of M1 (by 36.02 kcal/mol).

Oxaziridine Formation. The formation of an oxaziridine
metabolite is a rarely suggested pathway in drug metabolism.
The oxaziridine reactive metabolite may be involved in
apoprotein modification or covalent modification of
DNA."”'7"* In the case of a 3-substituted indazole compound,
the formation of oxaziridine was reported, mediated by several
rat CYPs enzymes such as CYP3Al and CYP3A2."”*'** In
contrast, the oxaziridine formation on TZ has not been
reported. The barrier for the formation of an oxaziridine ring is
14.56 kcal/mol via a transition state TS-A (Figures 4, 5). The
product complex (PC-A) is —1.00 kcal/mol more stable than
the starting species, which is less favorable than the
epoxidation product.

Figure S (right side) shows the PES for all the four reactions
studied here, epoxidation, S-oxidation, N-oxidation, and
oxaziridine formation in TZ. This comparison reveals that
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Figure 6. Participation of orbitals in the electron transfer during
epoxidation and S-oxidation pathways. (a) Cartoon representation of
orbital overlap of the z-bond with the z*_ orbital of heme in the
doublet state. (b) Cartoon representation of the orbital overlap of the
S-lone pair with 7*,, of heme in the doublet state.

the epoxidation of TZ is thermodynamically and kinetically
favorable compared to the S-oxidation, N-oxidation, and
oxaziridine formation reactions; although the barrier height
for oxaziridine formation is only ~1 kcal/mol larger than for
epoxidation, the oxaziridine metabolite (M4) is much less
stable (by 13.75 kcal/mol) than M1. The PC complex of N-
oxide product is as stable as the epoxide product, but the
barrier for its formation is ~7 kcal/mol higher. It can thus be
concluded that the formation of epoxide on the TZ ring is the
most favored CYP-mediated reaction.

Influence of the Amino Group at C? in TZ. Metabolism
studies on the oxidation of 2-aminothiazoles (e.g., sudoxicam)
were extensively reported, during which the Preferential
formation of epoxidation products were observed.'"”'**%*’ In
the current work, these reactions were modeled with the help
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Figure 7. Model compounds of 2-aminothiazole (ATZ) and 2-amino-
S-methyl thiazole (AMTZ).

of 2-aminothiazole (ATZ, Figure 7) and Cpd I. Figure 8 shows
the optimized structures of the transition states on this reaction
path. Figure S (left) provides the PES of the oxidation
reactions of ATZ. In the case of ATZ also, the epoxidation
reaction is the most preferred one, with a barrier of 7.16 kcal/
mol in comparison to S-oxidation and N-oxidation reactions
(7.97 and 12.13 kcal/mol respectively). The barrier for the
epoxidation of ATZ is lower (7.16 kcal/mol) in comparison to
the barrier for epoxidation of TZ (13.63 kcal/mol). This is well
supported by the global nucleophilicity indices (N)—for ATZ
(1.01 eV) is higher than that of TZ (0.71 eV). The local
nucleophilicity at the C° center of ATZ (N = —0.60 eV) is
slightly higher than that of C° center of TZ (N = —0.47 eV).
The epoxide product complex involving ATZ is —37.46 kcal/
mol more stable than the reactive complex. Similarly, S-
oxidation and N-oxidation processes also become energetically
more favorable in ATZ in comparison to TZ. For the
oxaziridine formation from ATZ, it was not practical to
identify a transition state (all attempts led to the N-oxidation
path). The amine group at the C*-position of ATZ can also
undergo N-hydroxylation, it is hypothesized that this
mutagenicity originates from the reactive intermediate
involving the N-hydroxy metabolite."””™"*> To verify this
hypothesis, a quantum chemical study has been carried out.
The barrier for the abstraction of a hydrogen radical from the
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NH, group is 7.53 kcal/mol, which leads to the formation of a-
radical intermediate, that forms N-hydroxy product via a
rebound step (Figure S3). N-hydroxy metabolite can lead to
mutagencity by interacting with DNA and proteins. These
results are clearly indicating that it is possible to distinguish the
preferred metabolic reaction of the thiazole containing
compounds after successfully predicting the SOM. Table S3
provides a comparative analysis of the metabolites and isomers
originating from TZ and ATZ. In the case of ATZ also the
isomers are more stable than the metabolites. Also, the isomers
110 and I11 of ATZ metabolites are most electrophilic and
most reactive with MeO™. On a relative scale, the metabolites
originating from ATZ are marginally less electrophilic. Overall,
it can be concluded that the metabolite formation becomes
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easier with 2-amino substitution, but the reactivity of the
metabolites is not significantly altered due to 2-amino
substitution.

Influence of Alkylation at the C Position. Toxicity studies
on the drugs sudoxicam and meloxicam were extensively
reported.'”'?7** Although meloxicam only differs in the
methyl group at C° position (Figure 1) from sudoxicam, clearly
differential toxicity profiles were noticed.'” To understand the
biochemical changes in the metabolism of meloxicam,
quantum chemical studies were performed on 2-amino-5-
methyl-thiazole (AMTZ, Figures 7 and 8) as a model
compound and Cpd I. The energy barriers for the oxidation
reactions are 16.63, 17.21, and 19.42 kcal/mol for epoxidation,
S-oxidation, and N-oxidation, respectively, in AMTZ (see SI

https://doi.org/10.1021/acs.chemrestox.0c00450
Chem. Res. Toxicol. 2021, 34, 1503—1517


http://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.0c00450/suppl_file/tx0c00450_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.0c00450/suppl_file/tx0c00450_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.0c00450/suppl_file/tx0c00450_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00450?fig=fig9&ref=pdf
pubs.acs.org/crt?ref=pdf
https://doi.org/10.1021/acs.chemrestox.0c00450?rel=cite-as&ref=PDF&jav=VoR

Chemical Research in Toxicology

pubs.acs.org/crt

Figure S4). The barrier for the abstraction of a hydrogen
radical from the C*-methyl group is 14.98 kcal/mol via TS-H
(optimized structures of important transition states are
provided in Figure 8). The hydroxy metabolite is highly stable
(—45.50 kcal/mol) in comparison to the epoxide, S-oxide, and
N-oxide metabolites (—30.16, —13.03, and —16.01 kcal/mol,
respectively) (see SI Figure S4). Moreover, the hydroxy
product is nontoxic (although its oxidation products are toxic
due to their electrophilicity). This indicates that the
hydroxylation reaction is more preferred in the case of 2-
amino-5-methyl-thiazole (meloxicam) than alternative oxida-
tion reactions, which are favorable in the case of sudoxicam.
This is well supported by the molecular docking results (Figure
S6). In the first ranked pose of sudoxicam in the active site of
the CYP2C9 and CYP3A4 isoforms, the C° atom of the
thiazole ring is pointed toward the Fe==O center. At the same
time, in the case of meloxicam the methyl group at C° is
pointed toward the Fe==O center. Thus, in the case of
meloxicam, hydroxylation at the C5-methyl of the thiazole ring
is preferred, supporting the results from experimental
observations (see SI, for docking poses, Figure S6)."** Thus,
the oxidation reactions that lead to the formation of toxic
metabolites are avoided when an alkyl group is present at the
C® position in TZ (or ATZ). Similarly, analysis has been
carried out to identify the effect of alkylation at C4 position
(C4-AMTZ), and the results indicate that S-oxidation is more
preferred in relation to other alternate pathways (see SI Figure
S7).

Reactions of Epoxide Reactive Metabolite. The
epoxide metabolite (M1) of TZ is more stable than the S-
oxide metabolite (M2), N-oxide metabolite (M3), and
oxaziridine metabolite (M4) (Figures 4 and 8) by 24.26,
13.75, and 36.75 kcal/mol, respectively. All these primary
metabolites are isomers; they can rearrange to other more
stable isomers (I5-114) (Figure 9). Although M1 is not very
electrophilic, many of its isomers are highly electrophilic
(Table 3), undergo nucleophilic attacks (by amino acids and/
or GSH), or undergo hydrolysis reactions. The isomers with
high electrophilicity can be toxic (Table 3). In the following
sections, the relative energies of a few important isomers and
their reactivity profiles are described.

Isomers. 15—114 are structural isomers of M1—M4. Double
oxidation is also possible on the thiazole rings,””'® and many
of these products have been reported to be toxic. It is
important to establish the relative energies of all the isomers
and double oxidation. The isomers IS—I14 are more stable
than M1—-M4 (Figure 9).

M1 can undergo an acid-catalyzed 1,2-H shift, and the
disruption of the epoxide ring by cleaving the C*~O bond
leads to the formation of isomer IS, a hydroxyl intermediate.
Isomer IS can tautomerize to the 3-keto isomer I6 via keto—
enol tautomerism. The isomers IS and I6 are more stable than
M1 (by 29.94 and 35.41 kcal/mol, respectively). The isomer
I7 is also a hydroxy isomer similar to IS, which can also be
generated via an acid-catalyzed epoxide ring-opening process
(breakage of C°—O bond) from I7. The isomers I8 and I9 are
the keto isomers of M1 (via I7) through a 1,3-H-shift and a
1,5-H-shift (keto—enol tautomerism), respectively. Isomers
17—19 are also more stable than M1. The keto isomers (16, I8,
and I9) are more electrophilic than M1. The isomers I8 and I9
can undergo a hydrolysis reaction and lead to the formation of
thiol products (after ring-opening), which can further react
with cysteine (or GSH), leading to the formation of disulfide
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Table 3. Relative Free Energies (AG) and the Global
Electrophilicity Indices (@) of the Reactive Metabolites”

RMs relative energy (AG)® electrophilicity (@) E, (MeO")?
TZ 1.42

M1 0.00 1.62 9.54
M2 24.26 3.03 6.81
M3 13.75 1.62 18.41
M4 28.84 1.90 17.56
15 —29.94 1.37 21.75
16 —35.41 2.34 9.22
17 —20.74 1.37 21.01
18 —34.07 1.74 10.23
19 —32.5§ 2.57 9.14
110 —1.30 4.26 4.24
111 —9.91 4.38 4.01
112 —30.83 1.12 22.81
113 —42.45 0.99 23.45
114 —-36.09 2.38 9.10
D1 54.91 4.87 3.95
D2 18.77 3.00 7.58
D3 2.63 3.26 8.14
D4 26.24 2.81 10.75
DS 12.14 2.69 8.74
D6 9.82 4.04 6.71
D7 59.41 3.35 6.53
D8 68.01 2.68 11.45
D9 2.75 3.27 6.42
D10 0.00 2.19 9.15

“The activation energies (E,(MeO™)) for the reaction of the RM with
MeO™. ¥In kcal/mol.

adducts. On the other hand, the double oxidation products
D1-D10 (Figure 10) are highly electrophilic and can lead to
many toxic reactions with amino acids (especially when GSH
levels are low).

OH (o]
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Figure 10. 2D structures of possible double oxidation products (D1—
D10).

The rearrangement of thiazole epoxide M1 results in the
generation of isomer I10, owing to the opening of both the
five-membered and three-membered rings. This rearrangement
is an exergonic process by 7.44 kcal/mol and with a barrier of
14.54 kcal/mol (TS1, Figure S8). The negative hyper-
conjugation originating from the bridging oxygen atom lone
pairs of electrons of M1 (breaking of S—C' bond) could be the
driving force for this rearrangement. I10 is highly electrophilic
in nature with a high global electrophilicity index (@ = 4.26),
which is much higher than that of M1 (@ = 1.62). Nucleophilic
residues or GSH can attack at C° position of 110 and generate
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adducts. The isomer I10 adopts a cis arrangement across the
central imine unit, I11 is the corresponding trans isomer,
which is about 2.47 kcal/mol more stable than I10. I11 is also
highly electrophilic (w = 4.38).

Nucleophilic Attack. In the active site of CYPs, a few
nucleophilic amino acid residues are present, which are
suggested to be responsible for the opening of the epoxide
ring and the formation of a covalent adduct, leading to the
inhibition of CYPs by MBI For this purpose, the crystal
structures of various isoforms of cytochrome (CYP 3A4, 2C9,
2C19 and 2D6; downloaded from the Protein Data Bank)
were analyzed. Various nucleophilic amino acids (serine,
threonine, cysteine, arginine, and lysine) were identified in
the vicinity of the heme-porphyrins (within S A distance)
(Table S2). For example, threonine is present in the active site
of most CYP isoforms, it participates in the proton relay
mechanism from a carboxylate side chain to the distal oxygen
of Compound 0 (ferric-hydroperoxo species) resulting in the
formation of the active species Cpd 1.'>> The nucleophilic
residues are active at the ROH or RSH group. The oxygen/
sulfur atom lone pair of electrons attack the electrophilic M2.
Alternatively, the OH/SH group can also first be ionized to
RO™/RS™ with the help of basic residues and react.

In our previous studies, it was realized that Ser/Thr react in
an anionic rather than a neutral state under physiological
conditions.>'?*** Thus, the nucleophilic addition reactions
were studied only with anionic species MeO™ and MeS™ (as
models of anionic serine and cysteine). Figure 11 shows the

OH
MeO~ "i o Ea9-54(56.89)
N4 S\ AG=-29.21(-14.03)
N o M1-OH
Pl Vo
s ;
OH
TN N E,=15.98 (48.72)
M1 I AG=-28.67 (-14.14)
MeS™ S S\ ’
M1-SH

Figure 11. Nucleophilic addition reactions of the isomer M1. All of
the energy values are in kcal/mol. The values given are for the
reactions of M1 with anionic (neutral) species.

nucleophilic addition reactions of M1 by the model
nucleophiles. The energy barrier for the nucleophilic attack
reaction between M1 and MeO is 9.54 kcal/mol (TS2, Figure
S8). Likewise, the energy barrier for the reaction between M1
and MeS is 15.98 kcal/mol (TS3, Figure S8). Thus, the
barriers for nucleophilic attack by Ser/Thr/Cys are small, so
Ser/Thr/Cys can cause MBI via the acid—base enzyme
catalysis processes, which generate their adducts due to
nucleophilic attack.

Hydrolysis. The epoxide metabolite M1 can also undergo a
hydrolysis reaction by water molecule(s) directly in the cavity
of the enzyme. The final metabolites MS and M6 originating
from this hydrolysis process have been suggested from
experimental studies,’”>> and this can be explained as shown
in Figure 12. Hydrolysis of MI initially results in the
generation of the vicinal diol M1-D, which is generally
nontoxic. In the hydrolysis reaction, a water molecule attacks at
the C*/C° centers of M1. The predicted electrophilicity is
larger at C® than at C* thus, it is more likely that the attack of
H,O happens at the C° center. The formation of M1-D is an
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Figure 12. Hydrolysis of the epoxide metabolite M1 with the
assistance of water. The values in parentheses are in the absence of
water mediation. All of the energy values are in kcal/mol.

exergonic process by —12.85 kcal/mol, requiring an energy
barrier of 28.45 kcal/mol via TS4 (Figure 12). The vicinal diol
can undergo ring—chain tautomerism'° to generate a-hydroxy
aldehyde intermediates: a 1,3-H-shift from the 4-hydroxy
group leads to the generation of HM1 (by breaking the N—C*
bond) and a 1,5-H-shift from the S-hydroxy group leads to the
formation of HM2 (by breaking the S—C> bond). The H-shift
reaction can occur directly (unimolecular process) or be
assisted by a water molecule (bimolecular process). The
formation of HM1 from M1-D requires barriers of 25.17 kcal/
mol via TS5’ (43.44 kcal/mol without the assistance of a water
molecule via TSS, Figure 13). Similarly, the formation of HM2
from M1-D requires a barrier of 24.82 kcal/mol via TS7’
(37.85 kcal/mol without the assistance of a water molecule via
TS7). HM1 and HM2 can undergo one more H-shift process
leading to the generation of the experimentally reported
metabolites MS and M6 by breaking S—C> and N—C* bonds,
respectively, for which the estimated barriers are 4.26 and 3.95
kcal/mol, respectively. The formation of such metabolites were
implicated in toxicity."*”"**

It can be expected that not only M1—M4 but also all of the
other possible isomers and dioxidation products can react with
nucleophilic amino acids, especially because some of the
alternative isomers are more electrophilic than M1-M4. Thus,
it can be envisaged that the toxic effects may be originating
from such isomeric metabolites. The reactions of all of these
metabolites (M1—M4, 15—114, D1-D10) were carried out
with MeO~ (a model of anionic serine). Table 3 shows the
activation energy values for reactions of the isomers with
MeO™. These values suggest that the greater the electro-
philicity of the isomer, the lower the energy barrier for the
reaction with MeO™. For example, isomer I11 requires a very
low barrier (4.01 kcal/mol) for the reaction with MeO~ in
comparison to M1 (9.54 kcal/mol). Similarly, in the case of
dioxidation metabolite isomers, there are a few isomers such as
D1 that require a small activation energy (3.95 kcal/mol). The
above analysis establishes that a few of the metabolites can
produce covalent adducts with nucleophilic amino acids,
leading to the inactivation of CYPs via MBI Isomers that
should be kept in the watch list in that respect are M2, 110,
111, D1, D2, D3, D6, D7, and D9; all of which are
characterized by a global electrophilicity >3 units. Hence, it
is advisable to design thiazole derivatives such that the
formation of such RMs is avoided.
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Figure 13. Optimized structures of the intermediates and transition states involved in the hydrolysis of epoxide metabolite (Figure 12). All of the

distances are in angstroms, (A) and angles are in degrees (deg).

B CONCLUSIONS

Molecular docking analysis has been carried out to explore the
preferred site of metabolism of thiazole containing drugs, and
the results are partially successful. The pathways associated
with the biotransformation of thiazole ring containing drugs
mediated by CYPs have been explored using quantum
chemical methods. The DFT (B3LYP(SCRF)/6-311++G-
(dp)//B3LYP/6-31+G(d)) studies were employed to inves-
tigate the mechanistic details associated with four important
biotransformation pathways (epoxidation, S-oxidation, N-
oxidation, and oxaziridine formation) of the model compounds
thiazole (TZ) and 2-aminothiazole (ATZ). The epoxidation
process involves an initial attack of the C° carbon of the
thiazole ring at the Fe—O oxygen center, which requires an
energy barrier of 13.63 kcal/mol and is exergonic by 24.01
kcal/mol. The alternative reactions require either higher
barriers or lead to less stable products. The epoxidation
reaction becomes more favorable due to the presence of an
amine group at the C* position, but the same reaction becomes
less favorable when C® position is blocked (e.g., a methyl group
at the C® position).

The four RMs (M1—M4) of thiazoles can rearrange to an
additional ten more isomers via simple chemical rearrange-
ments. The global electrophilicity values of these 14 reactive
species were estimated. The electrophilicity of the initial
metabolites is not very high; however, their isomers may be
highly electrophilic and thus toxic (ex. I10 and I11). The
metabolites (or their isomers) can directly form covalent
adducts due to nucleophilic addition reaction with threonine/
serine. The barrier for the reaction between the epoxide RM
and MeO~ (a model of anionic serine/threonine) was found to
be small (~10 kcal/mol). These types of reactions possibly
lead to MBI complex formation. The energy profile of the
hydrolysis pathways from the epoxide metabolites leading to
the formation of a protoxin was also explored. Overall, this
study provided the atomic-level details of the metabolic
processes associated with thiazole containing drugs and helped
in identifying the toxic versus nontoxic reactive metabolites.
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