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ABSTRACT: Understanding mechanisms of promiscuity is increasingly important from a fundamental and application point of
view. As to enzyme structural dynamics, more promiscuous enzymes generally have been recognized to also be more flexible.
However, examples for the opposite received much less attention. Here, we exploit comprehensive experimental information on the
substrate promiscuity of 147 esterases tested against 96 esters together with computationally efficient rigidity analyses to understand
the molecular origin of the observed promiscuity range. Unexpectedly, our data reveal that promiscuous esterases are significantly
less flexible than specific ones, are significantly more thermostable, and have a significantly increased specific activity. These results
may be reconciled with a model according to which structural flexibility in the case of specific esterases serves for conformational
proofreading. Our results signify that an esterase sequence space can be screened by rigidity analyses for promiscuous esterases as
starting points for further exploration in biotechnology and synthetic chemistry.

1. INTRODUCTION simulations demonstrated that more promiscuous CYPs show
larger structural plasticity and mobility,'*™'® or TEM-1 p-
lactamase and a resurrected progenitor, for which molecular
simulations show that the pocket of the ancestral, and more
promiscuous, enzyme fluctuates to a greater extent.'” However,

Enzymes involved in primary metabolism typically exquisitely
discriminate against other metabolites. Nevertheless, evolution
of specificity is only pushed by nature to the point at which
“unauthorized” reactions do not impair the fitness of the
organism.' As a result, the universe of promiscuous activities
available in nature has been suggested to be enormous.”’
Understanding mechanisms of promiscuity has thus become
increasingly important for the fundamental understanding of
molecular recognition and how enzyme function has evolved
over time' but also to optimize enzyme engineering
applications.’™” A particular challenge in the latter case is
the ability to discover a suitable enzyme with “sufficient”
promiscuous activity to serve as a starting point for further
exploration.l Received: February 9, 2021
Enzyme structural dynamics, besides its role in catalysis™” Published: May 5, 2021

and allosteric regulation,lo_13 has been recognized as an

important mechanism by which promiscuity can be achieved.”

Prominent examples are human cytochrome P450 (CYP)

enzymes, for which crystallographic studies and molecular

examples for the opposite, i.e., conformational changes selected
in evolution such that they enhance specificity in molecular
recognition,18 have received much less attention in the context
of enzyme promiscuity.

A clear limitation for scrutinizing the link between enzyme
structural dynamics and substrate promiscuity is the general
lack of large-scale data on one enzyme (super)family tested
against a multitude of ligands'® (cf. ref' for notable
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exceptions). Likewise, acquiring information on enzyme
dynamics at the atomistic level by experimental techniques
or classical molecular dynamics (MD) simulations is
burdensome. Here, we exploit comprehensive experimental
information on the substrate promiscui 20 of esterases
(abbreviated EHs, for “ester hydrolases”)”' together with
computationally efficient rigidity analyses”**° of comparative
models of EHs to understand the molecular origin of the
observed promiscuity range. Enzyme rigidity, or its opposite
flexibility, is a static property that denotes the impossibility, or
possibility, of motions in an enzyme under force without givin%
information about directions and magnitudes of movements.”>
Thus, enzyme flexibility should not be confused with enzyme
mobility, which describes actual motions in an enzyme.
Rigidity analysis results do not rely on the accurate description
of the time dependency of processes,”> which makes them
valuable in cases where timescales over multiple orders of
magnitude may govern such processes, like in enzyme
dynamics.*”

In recent years, EHs have obtained much attention in basic
research and industrial applications.”® EHs are widely
distributed in nature within microbial communities (at least
one EH is found in each bacterial genome), and they have
been extensively examined with state-of-the-art (meta)genomic
techniques and investigated by functional screenings compared
to many other classes of enzymes. They also possess
outstanding properties in terms of stability, reactivity, and
scalability, making them appropriate biocatalysts to improve
competitiveness, innovation capacity, and sustainability in a
modern circular bio-economy.”” Recently, a large-scale study
on substrate promiscuity (Pgy, which denotes the number of
esters hydrolyzed by an EH) of 147 phylogenetically,
environmentally, and structurally diverse microbial EHs was
described by Martinez-Martinez et al,”' in which all EHs were
functionally assessed against a customized library of 96 esters.
As to mechanistic understanding, the authors related Pgy to a
structural parameter, the active site effective volume. However,
the impact of enzyme flexibility on Pgy was not assessed.

In our study, we thus ask the following questions: (I) What
is the relation between Pgy and EH flexibility? (II) Does this
relation hold if experimentally determined EH thermo-
stabilities are used as proxies for enzyme flexibility? (III)
What is the relation between Pgy and EHs’ specific activities?
(IV) Is there a preference of promiscuous or specific EHs for a
particular type of esters? (V) Can this preference be
understood with respect to EH flexibilities?

We addressed these questions by exploiting comprehensive
experimental information on the substrate promiscuity of
esterases tested against 96 esters together with computationally
efficient rigidity analyses to understand the molecular origin of
the observed promiscuity range. Unexpectedly, our data reveal
that promiscuous esterases are significantly less flexible than
specific ones, are significantly more thermostable, and have a
significantly increased specific activity.

2. MATERIALS AND METHODS
2.1. Definition of Data Sets. The present study builds on

the study from Martinez-Martinez et al.”’ To assess Pgy, i.e.,
the number of esters hydrolyzed by an EH irrespective of the
catalytic efficiency, the authors experimentally investigated 147
phylogenetically, environmentally, and structurally diverse
microbial EHs (termed experimental data set) against a

customized library of 96 different esters. Two commercial
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lipases, which have found wide biotechnological applications,
CalA and CalB from Pseudozyma aphidis (formerly Candida
antarctica), were included for comparison. For details on
determining and classifying Pgy, see the Supporting
Information. To validate that Pgy defines promiscuity of EHs
in a quantitative manner, k., and K,, values were determined
for 10 expressed and purified EHs covering the entire Pgy
range (see Section 2.9) and a promiscuity index I (see eq S4,
Supporting Information) computed and compared to Pgy.
Finally, the similarity of the ester substrates was assessed by the
maximum pairwise Tanimoto-Combo similarity score §; for
compound i versus j, accounting for shape and chemical
complementary between 3D structures, and the mean
maximum pairwise Tanimoto-Combo similarity score J; of a
substrate i to all other substrates in the data set (see the
Supporting Information).

As our computational approach involves extensive molecular
dynamic (MD) simulations for generating conformational
ensembles (see Section 2.3), we selected 35 EHs from the
volume data set (termed flexibility data set) for comparative
modeling (see Section 2.2). The criteria for choosing EHs of
the flexibility data set are explained in Section 3.1.

2.2. Comparative Modeling and Validations of the
Flexibility Data Set. Comparative models of the flexibility
data set (see Section 2.1) were generated using our in-house
structure prediction meta-tool TopModel*® that has been
successfully applied in previous studies.””~** TopModel uses
multiple state-of-the-art threading and sequence/structure
alignment tools to generate a large ensemble of models from
different pairwise and multiple alignments of the top five
highest-ranked template structures. The TopModel software is
available at https://cpclab.uni-duesseldorf.de/index.php/
Software.

The quality of the comparative models was assessed by our
meta Model Quality Assessment Program (meta-MQAP)
TopScore.*® TopScore uses deep neural networks (DNN) to
combine scores from 15 different primary MQAPs to predict
accurate residue-wise and whole-protein error estimates. For
details on the model quality assessment by TopScore and
validation, see the Supporting Information.

To test whether the catalytically active residues (CARs) of
the comparative models are accessible for substrates, we
applied the CAVER 3.0.3 PyMOL Plugin.** Starting points for
the computations were defined based on the Cartesian
coordinates of the CARs’ center of mass (COM). Default
values were used for the probe radius (0.9 A), shell radius (3.0
A), and shell depth (4.0 A).

2.3. Generation of Structural Ensembles. Structural
ensembles of EHs were generated by all-atom MD simulations
of, in total, S ys simulation time per EH. For details on starting
structure preparation, parameterization, and equilibration, see
the Supporting Information.

All minimization, equilibration, and production simulations
were performed with the pmemd.cuda module™ of
Amber19.° During production simulations, we set the time
step to integrate Newton’s equation of motion to 4 fs following
the hydrogen mass repartitioning strategy.”” Coordinates were
stored into a trajectory file every 200 ps. This resulted in 5000
configurations for each production run that were considered
for subsequent analyses.

2.4. Constraint Network Analysis. The flexibility
analyses were performed with the Constraint Network Analysis
(CNA) software package (version 3.0).”>7*° CNA functions as
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a front-end and back-end to graph theory-based software
Floppy Inclusions and Rigid Substructure Topography
(FIRST).”® Applying CNA to biomolecules aims at identifying
their composition of rigid clusters and flexible regions, which
can aid in the understanding of the biomolecular structure,
stability, and function.”> > As the mechanical heterogeneity of
biomolecular structures is intimately linked to their diverse
biological functions, biomolecules generally show a hierarchy
of rigidity and flexibility.”* In CNA, biomolecules are modeled
as constraint networks in a body-and-bar representation, which
has been described in detail by Hesphenheide et al.’” A fast
combinatorial algorithm, the pebble game, counts the bond
rotational degrees of freedom and floppy modes (internal,
independent degrees of freedom) in the constraint network.*’
To monitor the hierarchy of rigidity and flexibility of
biomolecules, CNA performs thermal unfolding simulations
by consecutively removing noncovalent constraints (hydrogen
bonds, including salt bridges) from a network in increasing
order of their strength.”' =" For details on thermal unfolding
simulations, see the Supporting Information. To improve the
robustness and investigate the statistical uncertainty, we carried
out CNA on ensembles of network topologies (ENTMP)
generated from MD trajectories (see Section 2.3).**

CNA software is available under academic license at https://
cpclab.uni-duesseldorf.de/index.php/Software and the CNA
web server is accessible at https://cpclab.uni-duesseldorf.de/
cna.
2.5. Local and Global Indices. From the thermal
unfolding simulations, CNA computes a comprehensive set
of indices to quantify biologically relevant characteristics of the
protein’s stability. Global indices are used for determining the
rigidity and flexibility at a macroscopic level; local indices
determine the rigidity and flexibility at a microscopic level of
bonds.” The cluster configuration entropy Hy,., is a global
index that has been introduced by Radestock and Gohlke.*” As
done previously, we applied H,., as a measure for global
structural stability of proteins.”>***°~*° The stability map re; is
a local index that has been introduced by Radestock and
Gohlke.”> We applied rc; as a measure for local structural
stability of proteins in previous studies.””*”*° For details on
both indices, see the Supporting Information.

2.6. Root-Mean-Square Fluctuations. The per-residue
root-mean-square fluctuations were calculated for each EH
(RMSFygy) and for its CARS (RMSF,g) based on the MD
trajectories (see Section 2.3). Prior to the calculations, the
structures of each trajectory were superimposed onto the
average structure using the 90% least mobile residues of the
respective EHs.”'

2.7. Torsion Angles. For each of the 96 esters, the number
of freely rotatable bonds (torsion angles, TA) was calculated
baged on the SMILES codes provided by Martinez-Martinez et
al”!

To compare how many esters with a specific TA are
hydrolyzed by each EH, we calculated the normalized
proportion of ester hydrolysis with a specific TA (nor-
M, y.,(TA)) as the number of hydrolyzed esters with a specific
TA (esteryygolyzea(TA)) divided by the total number of esters
in the data set with this specific TA (esterjp,,,(TA)) (eq 1).

eSterh drol ed(TA)
norm,g,, (TA) [%] = —————— X 100%
eSterlibrary(TA)

(1)
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2.8. Circular Dichroism Spectroscopy. Eleven EHs,
namely, EH, (Protein Data Bank (PDB) acc. no. SJD4), EH,
(GenBank acc. no. KY483643), EH; (GenBank acc. no.
KY483645), EH, (GenBank acc. no. KR107250), EH,
(GenBank acc. no. KP347751), EHg (GenBank acc. no.
WP_011587341.1), EH, (GenBank acc. no. KY483648), EH 4
(GenBank acc. no. KP347759), EH,; (GenBank acc. no.
KP347760), EHy, (GenBank acc. no. KR107248), and EH,;
(GenBank acc. no. KP347758) from metagenomic origin, were
used in the present study to perform circular dichroism (CD)
determinations. The vector pET46 Ek/LIC and the host
Escherichia coli (E. coli) BL21(DE3) were the sources of the
Hiss-tag EH,, EH,, EHg, and EHj3,, the vector pPBXNH3 and
the host E. coli MC1061 were the sources of the Hiss-tag EH,,
EH;, and EH,, and the vector p1STv-L and the host E. coli
BL21(DE3) were the sources of EHy, EH,4, EH,;, and EH,;.
Prior to analyses, the soluble His-tagged proteins were
produced and purified after binding to a Ni-NTA His-Bind
resin (Sigma-Aldrich, MO, US) as described by Martinez-
Martinez et al.”' Purity was assessed as >98% using SDS-PAGE
analysis in a Mini PROTEAN electrophoresis system (Bio-Rad,
Madrid, Spain) and subsequent staining with Coomassie
Brilliant Blue. A total of about 10—20 mg of total purified
recombinant protein was obtained on average from 1 L of
culture. All proteins were stored at —20 °C at a concentration
of 10 mg/mL in 40 mM (4-(2-hydroxyethyl)-1-piperazinee-
thanesulfonic acid (HEPES) buffer (pH 7.0) until use. The
CD spectra were acquired between 190 and 270 nm with a
Jasco J-720 spectropolarimeter equipped with a Peltier
temperature controller, employing a 0.1 mm cell at 25 °C.
The spectra were analyzed, and denaturation temperatures
were determined at 220 nm between 10 and 85 °C at a rate of
30 °C per hour in 40 mM HEPES buffer (pH 7.0). A protein
concentration of 1.0 mg mL™" was used. Denaturation
temperatures were calculated by fitting the ellipticity (mdeg)
at 220 nm at each of the different temperatures using a five-
parameter sigmoid fit with Sigma Plot 14.0. The CD data are
available in CD Data Table.

2.9. Kinetic Parameter Determination. Ten EHs,
namely, EH, (PDB acc. no. §JD4), EH; (GenBank acc. no.
KY483645), EH; (GenBank acc. no. KR107271), EH,
(GenBank acc. no. KY483644), EH,, (GenBank acc. no.
KR107263), EH;; (GenBank acc. no. KR107278), EH;,
(GenBank acc. no. KR107248), EH,,, (Protein Data Bank
acc. no. §JD3), EH;;5 (GenBank acc. no. KR107274), and
EH,,; (GenBank acc. no. KR107253) from metagenomic
origin, were used in the present study to perform kinetic
determinations (k. and K,). The vector pET46 Ek/LIC and
the host E. coli MC1061 were the sources of the Hiss-tag EH,
EH,, EH,,, EH,,, EHy,, EH,y,, EH,,s, and EH,,,, the vector
pBXNH3 and the host E. coli MC1061 were the sources of the
Hiss-tag EH;, and the vector pBXCH and the host E. coli
MC1061 were the sources of the Hiss-tag EH,. The soluble
His-tagged proteins were produced and purified as described
by Martinez-Martinez et al.”* For details, see above.

The kinetic parameters were calculated at 550 nm using a
continuous pH indicator (phenol red; €550, = 8450 M
cm™) assay at 550 nm in 384-well plates as previously
described.*” Briefly, to 40 uL of 5 mM 4-(2-hydroxyethyl)-1-
piperazinepropanesulfonic acid (EPPS) buffer (pH 8.0), 2 uL
of a stock ester solution was added to achieve the desired
concentration of each ester. Finally, 2 uL of stock protein
solution was immediately added to each well, to achieve the

https://doi.org/10.1021/acs.jcim.1c00152
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Figure 1. Comparative modeling of EHs. (A) Based on sequence data provided by a large-scale study from Martinez-Martinez et al.,*' comparative
models were generated for 35 EHs with known (left, 11 EHs) and unknown (right, 24 EHs) crystal structures using TopModel.”® These EHs
constitute the flexibility data set. The EHs vary in Pgy (left ordinate, bars) and global TopScores (right ordinate, diamonds). Six EHs were selected
as representatives of the flexibility data set (termed representative data set) as indicated by magenta arrows. The quality of the comparative models
of (B) EHs with known crystal structures and lowest (EH115) or highest Py (EH001), (C) EHs with unknown crystal structures and lowest
(EH127) or highest Py (EH005), and (D) commercial EHs with highest (CalA) or lowest Py (CalB) was evaluated by TopScore.” For each
comparative model, the residue-wise TopScore is shown: A good (bad) homology model shows a low (high) residue-wise TopScore (see color
scale at the bottom). Insets depict CARs (spheres) within an EH. For clarity, the position of CARs is indicated by magenta stars.

desired protein concentration, using an Eppendorf Repeater
M4 pipette (Eppendorf, Hamburg, Germany). The total
reaction volume was 44 uL. Ester hydrolysis was measured
at 30 °C in a Synergy HT Multi-Mode Microplate Reader in
continuous mode at S50 nm over 24 h. One unit (U) of
enzyme activity was defined as the amount of free enzyme or
enzyme bound to the carrier required to transform 1 gmol of
substrate in 1 min under the assay conditions using the
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reported extinction coefficient (phenol red at 550 nm = 8450
M™! ecm™). For K, determination: [protein]: 4.5 ug mL™}
[ester]: 0—100 mM; reaction volume: 44 uL; T: 30 °C; pH:
8.0. For k_,, determination: [protein]: 0—270 ug mL™Y; [ester]:
100 mM; reaction volume: 44 uL; T: 30 °C; pH: 8.0. All
values, in triplicates, were corrected for nonenzymatic

transformation. Kinetic parameters were calculated by fitting

https://doi.org/10.1021/acs.jcim.1c00152
J. Chem. Inf. Model. 2021, 61, 2383-2395
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the data with Sigma Plot 14.0. The kinetic parameters are
available in Supplemental Data Table.

3. RESULTS

3.1. Definition of Data Sets. To understand the structural
origin of and develop a method to predict Pgy, the present
study builds on large-scale data from Martinez-Martinez et al.”’
The authors experimentally investigated Pgy of 147 EHs
(termed experimental data set; Figure S1) (see Section 2.1). In
doing so, compromises needed to be made regarding the
measurement of catalytic activity, ie., specific activity was
measured using enzymes expressed in E. coli without
subsequent purification, only a single concentration of wet
cells expressing enzymes (0.4 mg per ester) was used to
measure activity, and the substrates were tested at a single
concentration of circa 7 mM on average.”' To validate that the
Ppyy derived from the measured activities defines promiscuity of
the enzymes in a quantitative manner, k., and K, values were
determined now for 10 expressed and purified EHs covering
the entire Py range (see Section 2.9). k.,/K,, ideally serves as
the kinetic Earameter in enzyme promiscuity studies for
comparison.””** From k/K,, values of an enzyme toward a
defined set of substrates, a quantitative index of promiscuity I
(eq S4) can be calculated based on information entropy.”* I
yields a very good and significant (R* = 0.79, p = 0.0003)
correlation with Pgy, indicating that Pgy relates to EH
promiscuity in a quantitative manner (Figure S2), although
the range of I suggests that large Pry may still be associated
with moderate promiscuity. Note that although the I is a
functional parameter that is defined for a specified set of
substrates, promiscuity indices for different enzymes are
quantitatively comparable if they have been calculated using
the same substrate set.>* Furthermore, for the 10 EHs and
using the colorimetric assay herein used, k./K, can be
measured with a standard error of the mean (SEM) as low as
0.05 min™' mM™', which corresponds to k., and K, fitting
values 2-fold above the background signals under assay
conditions for each of the enzymes and esters. When k_./K,
> 0.05 min~' mM™' is used as a criterion to define that a
substrate is hydrolyzed, the resulting number of substrates for
the 10 EHs yields an excellent and significant (R* = 0.99, p <
107*) correlation with Py (Figure S3A), again indicating that
Py relates to EH promiscuity in a quantitative manner.
Likewise, excellent and significant (R* = 0.97, p < 107%)
correlations are obtained for k.,/K, > 0.10, 0.50, and 1.00
min~' mM™" (Figure S3B—D). Finally, esters that are
chemically similar to each other are expected to be
metabolized similarly by an EH; such correlations in the
substrate set would reduce the effective EH promiscuity.
Therefore, similarity of the substrates was assessed by the
maximum pairwise Tanimoto-Combo similarity score §; for
compound i versus j, which is bounded between 0 for
dissimilar compounds and 2 for identical ones, and the mean
maximum pairwise Tanimoto-Combo similarity score J; of a
substrate i to all other substrates in the data set; the Tanimoto-
Combo similarity score accounts for the shape and chemical
complementary between 3D structures as determined by the
Rapid Overlay of Chemical Structures approach.”® Complete
linkage clustering on the pairwise distance matrix calculated for
all 96 compounds from & yielded 20 clusters at a distance of
1.0 (Figure S4), which is equivalent to 0; = 1.0, indicating that
on average, less than five esters share a similarity that is half-
way between dissimilar and identical. The negatively skewed
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histogram of o; furthermore shows that §; peaks at 1.0 and is
below 1.2 (Figure SS), indicating that an ester generally shares
a similarity to all other esters that is half-way between
dissimilar and identical or worse.

Additionally, Martinez-Martinez et al. ranked (classified)
Ppy of 96 EHs (termed volume data set; Figure S1) based on
the active site effective volume (see Section 2.1; eq S1),”'
which will be used here as a reference to compare the power of
Py predictions. As our computational approach involves
extensive MD simulations for generating conformational
ensembles, we selected 35 EHs from the volume data set
based on the following criteria; they constitute the flexibility
data set (Figure S1). (I) The data set contains all 11 EHs with
known crystal structures (including the commercial EHs CalA
and CalB) (Figure 1A and Table S1) and 24 EHs for which no
experimental structure is available but for which comparative
models can be generated (see Section 3.2; Figure 1A and Table
S2). That way, we can probe to what extent the source of
structural information influences the outcome of our results.
(II) The chosen EHs of the data set show high diversities as to
Py and association to esterase families (Fgy, as defined by
Arpigny and Jaeger’®), similar to those found for the volume
data set (Figures S6 and S7 and Tables S3 and S4). This
resulted in Pgy ranging from 4 to 72 (Figure 1A and Tables S1
and S2). In the following, we consider Py as low if the EH
hydrolyzes <9 esters (11% of the data set), as moderate if the
EH hydrolyzes between 10 and 29 esters (49%), and as high if
the EH hydrolyzes >30 esters (40%) (Figure S6 and Table
S3). The data set covers 11 Fgy's of which Fy (44% of the data
set) and Fy (21%) are the best represented ones (Figure S7
and Table S4). This reflects the proportion of their presence in
the volume data set. (III) Only EHs with amino acid sequence
identities >25% in comparison to an existing crystal structure
were considered (see Section 2.1) to ensure a sufficient quality
of generated comparative models.

Finally, to uniformly depict the results across the present
study, six EHs were selected as representatives of the flexibility
data set based on Py (termed representative data set; Figure
S1): EHs with the lowest (EH11S) or highest Pgy (EHOO01)
and known crystal structures, EHs with the lowest (EH127) or
highest Py (EHO00S) and unknown crystal structures, and
commercial EHs with the lowest (CalA) or highest Pgy (CalB)
(Figure 1A—D and Tables S1 and S2).

3.2. Comparative Models of EHs Generated by
TopModel Show an Overall and Residue-Wise Good
Quality. To generate structural models of EHs as starting
points for our investigations, we performed template-based
modeling of the flexibility data set using TopModel™® (see
Section 2.2). In doing so, we also generated comparative
models of the 11 EHs for which crystal structures are available.
These structural models will be used to judge the quality of the
comparative modeling.

The quality of the comparative models of the flexibility data
set was assessed with TopScore,”> a meta Model Quality
Assessment Program (meta-MQAP) (see Section 2.2). For the
11 EHs with a known crystal structure, the global TopScores
range from 0.074 to 0.305 (Figure 1A and Table S1). As the
global TopScore describes whole-protein error estimates, this
shows that the structures contain between 7.4 and 30.5%
errors. The high quality of the structures is also demonstrated
by an average 1 — IDDT value of 022 + 0.04 (SEM)
computed from comparisons of the comparative models of
EHs with a known crystal structure against these experimental
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reference structures (Table SS). IDDT is a superposition-free
score that evaluates local distance differences of all atoms in a
model. It was demonstrated that IDDT is well suited to assess
local model quality, even in the presence of domain
movements.”” For reference, baseline 1 — IDDT values for
models with threading errors are >0.6S, and the 1 — IDDT
value for random protein pairs is 0.80 + 0.04.°” For
comparison, the average root-mean-square deviation between
the models and the respective known crystal structures is 1.71
+ 0.29 A (SEM) (Table S1). Notably, the global TopScore
values well and significantly correlate (R* = 0.61, p = 0.004)
with the 1 — IDDT values, indicating that global TopScore
values are well suited to assess the model quality of EHs
(Figure S8 and Table SS). The global TopScore values of the
comparative models of the other 24 EHs range from 0.087 to
0.269 (Figure 1A and Table S2), indicating that these models
are of equal quality than the ones for EHs with a known crystal
structure. The TopScore values of the representative data set
lie in a comparable range (Figure 1A and Tables S1 and S2).
Moreover, the comparative models of the flexibility data set
show low residue-wise TopScore values,” indicating that all
parts of a model are of good quality. We illustrate this for the
residue-wise TopScore of the comparative models of the
representative data set (Figure 1B—D). This also applies to
structural regions around catalytically active residues (CARs)
(Figure 1B—D). That way, it was possible to confirm CARs in
models of EHs with known crystal structures and to
unambiguously identify CARs in models of EHs with unknown
crystal structures (Figure 1B—D and Tables S1 and S2).

Additionally, we validated that CARs in all models are
accessible for substrates according to CAVER results® (see
Section 2.2), i.e., that all models are in an open conformation:
CARs are either located on the protein surface or are buried
and connected with the surface by tunnels. We illustrate this
for the comparative models of the representative data set
(Figure S9).

To conclude, comparative models were generated for 35
EHs of the flexibility data set using TopModel. The models
showed both an overall and residue-wise good structural
quality. Additionally, we validated that CARs in all models are
accessible for substrates.

3.3. Promiscuous EHs Are Globally Less Flexible.
Previous studies indicated that enzyme flexibility influences the
substrate promiscuity of enzymes.'*”'® For gaining insights
into how the flexibility of EHs is linked to Pgy, we applied
CNA,”>* a rigidity theory-based approach to analyze
biomolecular statics,” " to the flexibility data set (see Section
2.4). To improve the robustness and investigate the statistical
uncertainty, for each of the comparative models, we carried out
CNA on ensembles of network topologies (ENT™P) generated
from five MD trajectories of 1 us length each™ (see Sections
2.3 and 2.4). To investigate if the global flexibility of the EHs
influences Pgpy, we predicted T, the phase transition
temperature previously applied as a measure of structural
stability of a protein,””****~° for each EH (see Section 2.5).
T, was averaged over five ensembles (see Sections 2.3 and 2.4),
resulting in all but one case in SEM < 1.87 K (Figure 2A and
Tables S1 and S2).

T, and Pgy of the flexibility data set are well and significantly
correlated (R* = 0.60, p = 5.4 X 107%) (Figure 2A). To validate
the consistency of our approach, we considered EHs with
known or unknown crystal structures separately. In both cases,
good and significant correlations between T, and Pgy were
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Figure 2. Correlation of T}, vs Ppy. (A) Correlation between predicted
T, based on the global index H,, and Pgy for the flexibility data set.
Data points colored gray (black) represent comparative models of
EHs with (un)known crystal structures. The representative data set is
indicated by magenta crosses. Error bars show the SEM over five
independent MD simulations of 1 ps length each. Rigid cluster
decomposition at 332 K during the thermal unfolding simulation of
(B) EHs with known crystal structures and lowest (EHI1S) or
highest Pg; (EHO01), (C) EHs with unknown crystal structures and
lowest (EH127) or highest Pgy (EHO00S), and (D) commercial EHs
with lowest (CalA) or highest Pg; (CalB). Rigid clusters are
represented as uniformly colored blue, green, pink, cyan, and magenta
bodies in the descending order of their sizes.

revealed (known crystal structures: R = 0.48, p = 0.019;
unknown crystal structures: R* = 0.73, p = 1.1 X 1077). The
two R? values are not significantly different (p = 0.33), which
lends support to the quality of comparative models predicted
with TopModel and indicates that future predictions on EHs
with unknown experimental structures should be promising.
Notably, EHs with high Pgy have a high T, and vice versa, i.e.,
promiscuous EHs are globally less flexible. Exemplarily, this is
depicted for EHs of the representative data set with known
crystal structures and lowest (EH11S) or highest Pgy
(EHO01), which showed T, of 322.3 and 3572 K, with
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unknown crystal structures and lowest (EH127) or highest Pry
(EHO00S), which showed T, of 318.6 and 351.1 K, and with
CalA and CalB, which showed T, of 346.2 and 351.6 K (Figure
2A and Tables S1 and S2). The differences in global structural
stability of these EHs are illustrated by the rigid cluster
decomposition at 332 K during the thermal unfolding
simulations (Figure 2B—D): promiscuous EHs are globally
more structurally stable at the elevated temperature as
indicated by fewer, but larger, rigid clusters. Note that we
used all EHs in the monomeric state to treat crystal structures
and comparative models alike, although for some crystal
structures, the biological assembly is a dimer or tetramer
(Table S1). However, visual inspection revealed that in no case
is the active site close to an interface. Furthermore, the T,
values of respective monomeric and multimeric EHs show an
absolute deviation of 3.5 + 0.7 K (mean + SEM) (Table S1),
which is less than 2-fold the SEM of T, computations,
indicating that the influence of the multimeric state on T is
negligible in these cases.

The EH flexibility analyzed so far is a static property and
describes the potential of motions in a biomolecule.”” Yet,
direct information on mobility within EHs is available from the
ensembles generated by MD simulations. We thus computed
exemplarily RMSFgy;, a measure for protein mobility (see
Section 2.6), across the ensembles of EHs from the
representative data set. RMSFyy, averaged over all residues
and all five MD trajectories, and Pgy do not yield a significant
correlation (p = 0.13) (Figure S10A and Table S6), in contrast
to T, and Pgy (R* =093, p =18 X 107%) (Figure S10B and
Table S6). Still, as promiscuous EHs are globally less mobile,
the same trend is obtained as in the case of the flexibility
analysis.

To conclude, a good and significant correlation between T,
and Py was found for the flexibility data set (R* = 0.60, p = 5.4
X 107%). These findings demonstrate that promiscuous EHs
are globally less flexible. RMSFgy is less predictive for Pgy,
although again, promiscuous EHs are characterized by a lower
global mobility, mutually confirming either result.

3.4. Promiscuous EHs Are More Thermostable.
Previous studies indicated that thermodynamically more
thermostable proteins frequently have a higher structural
stability.‘w’50 To investigate if promiscuous EHs, which were
predicted to be less flexible (see Section 3.3), are also more
thermostable, CD spectroscopy was applied to determine the
melting temperature Ty of the EHs (see Section 2.8). Note
that only if the unfolding of a protein is reversible, CD
spectroscopy provides true thermodynamic properties.’®
However, even if the unfolding is irreversible, because the
protein aggregates at high temperatures, the method can still
give information about relative stabilities.*® Hence, to reduce
the potential impact of different aggregation kinetics of
structurally different proteins, we applied CD spectroscopy
to one Fgy family only. In particular, we used Fjy because it is
the largest Fgy (Table S7). As shown exemplarily in the CD
spectrum for T4 determination for EH001 (Figure 3A) and in
CD Data Table for all other EHs listed in Table S7, only
single-state transitions between totally folded and unfolded
forms were observed, indicating that a bias due to possible
different aggregation kinetics can be excluded. For each EH, T}
determination was performed in triplicates with STD < 0.62 K.
T, and Py yield a fair and significant correlation (R* = 0.32, p
= 0.033, Figure 3B; a similarly fair and significant correlation is
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Figure 3. Determination of Ty via CD spectroscopy. (A) Exemplary
CD spectrum of EHOOL. The ellipticity changes in mdeg at 220 nm
were plotted against the temperature, resulting in a sigmoidal curve.
The inflection point was used to obtain the T, value (dotted line).
(B) Correlation between Ty and Pgy for 11 EHs of Fyy.

found if the data point with the highest Ty is omitted (R* =
045, p = 0.016)).

To conclude, promiscuous EHs are not only globally less
flexible but also more thermostable.

3.5. Promiscuous EHs Have Less Flexible Catalytically
Active Residues. The good correlation of Pgy and T,
encouraged us to investigate if local flexibility characteristics
of CARs will provide an even better predictor of EH
promiscuity. We thus computed Flexc,g for the flexibility
data set, i.e., the stability of rigid contacts between CARs and
other residues that are at most 5 A apart from each other,
based on the local index r¢;cighbor (see Section 2.5). For each
EH, Flexc,r was averaged over five ensembles (see Sections
2.3 and 2.4), resulting in SEM < 0.06 kcal mol™" (Figure S11A
and Tables S1 and S2).

Flexcar and Pgy of the flexibility data set yield a good and
significant correlation (R* = 0.51, p = 1.7 X 107%) (Figure
S11A). To validate again the consistency of our approach, we
considered EHs with known and unknown crystal structures
separately. In both cases, good and significant correlations
between Flexc,g and Ppy were found (known crystal
structures: R = 0.63, p = 3.7 X 107 unknown crystal
structures: R* = 0.47, p = 2.2 X 107*), again lending support to
the quality of comparative models predicted with TopModel.
Hence, EHs with high Pgyy have low Flexc, and vice versa, i.e.,
promiscuous EHs have less flexible CARs. Exemplarily, this is
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detailed for EHs of the representative data set with known
crystal structures and lowest (EH11S) or highest Pgy
(EHO001), which showed Flexc,y values of —0.74 and —1.91
kcal mol™, with unknown crystal structures and lowest
(EH127) or highest Ppy (EHO00S), which showed Flexcap
values of —1.10 and —1.86 kcal mol™, and with CalA and
CalB, which showed Flexcap of —1.31 and —1.95 kcal mol™!
(Figure S11A and Tables S1 and S2). The differences in local
structural stability of these EHs are illustrated by rigid contacts
between CARs and other residues that are at most S A apart
from each other (Figure S11B—D): promiscuous EHs are
locally more structurally stable as indicated by more stable
rigid contacts.

Finally, we exemplarily computed RMSF¢,g, a measure for
the mobility of a protein’s CARs (see Section 2.6), across the
ensembles of EHs from the representative data set. Averaged
RMSFp and Pgyy correlate worse (R* = 0.74, p = 0.029)
(Figure S12A and Table S6) than Flexcyg and Pgyy (R* = 0.92,
p =24 x 107°) (Figure S12B and Table S6), paralleling the
above results for the global measures. Still, again, as
promiscuous EHs have less mobile CARs, the same trend is
obtained as in the case of the flexibility analysis.

To conclude, a good and significant correlation between
Flexcag and Py was found for the flexibility data set (R* =
0.51, p = 1.7 X 107%). Hence, promiscuous EHs have less
flexible CARs. RMSFc,y is less predictive for Pgy, although
again, promiscuous EHs are characterized by less mobile
CARs, mutually confirming either result.

3.6. Promiscuous EHs Have an Increased Specific
Activity. In the study by Martinez-Martinez et al,”' the
experimental data set was screened against 96 esters in a
kinetic pH indicator assay (see Section 2.1). Besides the
average specific activity Act,yeqge given in U/ (g wet cells), also
the average maximum specific activity Act,,,, was determined.
Motivated by the reactivity—selectivity principle (RSP) initially
introduced for organic chemistry reactions,” which states that
a more reactive chemical compound is less selective in
chemical reactions, we intended to probe if Pgyy is related to
Act,,,.. For this, we established an approximate linear free-
energy relationship (LFER)®’ by relating log(Act,,,) and
log(Pgy) (Figure S13 and Table S8). In this analysis, the CalA
and CalB preparations were excluded because Act,,,, was given
in U/(g total protein) there.

Log(Act,n,,) and log(Pgy) of the experimental data set yield
a good and significant correlation (R* = 0.50, p = 4.6 X 107>)
(Figure S13A). Likewise, log(Act,,,) and log(Pgy) of the
flexibility data set yield a fair and significant correlation (R* =
0.22, p = 0.6 X 107?) (Figure S13B). To validate whether the
same trend emerges for EHs with known and unknown crystal
structures, we considered both types of EHs separately. In both
cases, fair and significant correlations between log(Act,,,,) and
log(Pgyy) were found (known crystal structures: R* = 0.34, p =
0.099; unknown crystal structures: R* = 0.23, p = 0.019).

To conclude, good to fair and significant correlations
between log(Act,,,) and log(Pgy) of the experimental data
set (R* = 0.50, p = 4.6 X 107>*) and the flexibility data set (R?
=0.22, p = 0.6 X 107%) were found. Hence, promiscuous EHs
have higher maximum specific activities.

3.7. Specific EHs Prefer to Hydrolyze Large and
Flexible Esters. Next, we investigated which of the 96 esters
was preferentially hydrolyzed by EHs with different Pgy’s. As a
criterion, we chose the number of freely rotatable bonds of an
ester, TA (see Section 2.7). We did so because TA is a
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combined measure for an ester’s size and conformational
dynamics.”' To account for the uneven distribution of esters in
our data set with respect to TA, we calculated norm,,,(TA),
ie, the number of hydrolyzed esters with a specific TA
(esterhydmlyzed(TA)) divided by the total number of esters in
the data set with this specific TA (esterjy,,,(TA)) (see Section
2.7) (eq 1).

According to TA, the esters were classified into 17 groups
that ranged from small esters with no rotatable bond to large
esters with 56 rotatable bonds (Figure 4 and Table S9). Esters
with three (24% of the ester library) and four (16% of the ester
library) rotatable bonds are most frequent. The analysis of the
experimental data set revealed that promiscuous EHs have high
normg,, values irrespective of TA, i.e, promiscuous EHs
accept a large variety of esters with different sizes and degrees
of conformational dynamics (Figure 4A and Table S9). In
contrast, specific EHs only have high norm,,, values regarding
esters with high TA, i.e., specific EHs preferentially hydrolyze
(very) large and flexible esters (Figure 4A and Table S9). The
same tendency was observed for the flexibility data set (Figure
4B and Table S9).

To conclude, promiscuous EHs accept a large variety of
esters with different sizes and degrees of conformational
dynamics, whereas specific EHs preferentially hydrolyze (very)
large and flexible esters.

4. DISCUSSION

The main outcomes of our analyses are (I) that promiscuous
EHs are significantly globally less flexible and have less flexible
catalytically active residues than specific ones, (II) that
promiscuous EHs are significantly more thermostable, (III)
that promiscuous EHs have a significantly increased specific
activity, and (IV) that specific EHs prefer to hydrolyze large
and flexible esters.

We established these relations using one of the still few
experimental large-scale data sets where a diverse set of EHs
was functionally assessed against a customized library of
dissimilar esters.”’ Functional promiscuity may arise from
several conditions, including the environment of the enzyme or
the concentration of a substrate, which may complicate the
analysis of the molecular mechanism underlying promiscuity.’
Still, functional promiscuity ultimately is a result of recognition
promiscuity;” here, we therefore focused on substrate
promiscuity,” i.e, an enzyme carries out its typical catalytic
function using noncanonical substrates, in that experimental
conditions had been kept constant for the assessment of the
different esterase/ester combinations.”’ Almost all of the EHs
were unambiguously assigned to one of the Fgy's of the
Arpigny and Jaeger classification, which is based mainly on a
comparison of amino acid sequences.”® Except for classes with
a few members only (cyclase-like EHs and the yeast family), all
other classes cover at least two of the three Pgy ranges such
that Pgy; cannot be assigned based on the EH’s class affiliation
(Figure S14 and Table S10) and, hence, amino acid sequence
information. Even family Fy, which contains a higher
proportion of substrate-promiscuous EHs, also contains EHs
with a small substrate range.

For scrutinizing the mechanism underlying esterase
promiscuity at the atomistic level, we needed to apply
comparative models of EHs, since only for ~7% of the
experimentally assessed EHs, crystal structures were available.
Restricting the generation of esterase models to sequence
identities >25% with respect to available targets yielded
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Figure 4. Relation between the number of esters’ TA and Pgy.
Relation between norm,g,, i.e., the relative proportion of the number
of hydrolyzed esters with a specific TA, and Pgy of (A) the
experimental data set and (B) the flexibility data set containing EHs
with known crystal structures (left), EHs with unknown crystal
structures (right), and EHs constituting the representative data set
(indicated by magenta arrows). TA was calculated based on SMILES
codes of 96 esters provided by Martinez-Martinez et al.*" A blue (red)
color indicates that the EH hydrolyzes many (few) esters with a
specific TA relative to the total number of esters in the data set with
this specific TA (see color scale on the right); the total number of
esters with a specific TA is given in brackets on the y-axis. Pgy is
defined as low if the EH hydrolyzes <9 esters, as moderate if the EH
hydrolyzes between 10 and 29 esters, and as high if the EH hydrolyzes
2>30 esters.

generally good structural models both globally and locally, as
also validated against cases where crystal structures are known.
Throughout our study, we probed for the consistency of our
analyses between subsets of EHs for which crystal structures
are either known or not; we only found quantitative differences
but no qualitative ones. One of the reasons is likely that rigidity
analyses were based on structural ensembles generated by
multiple and ps-long MD simulations, which has been shown
to improve both global and local protein structures®”®* to the
level of approaching experimental accuracy®® and markedly
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increases the robustness of the results.** We furthermore
showed that results are consistent irrespective of whether EH
flexibility characteristics were assessed globally or only for
CARs and that mobility characteristics computed directly from
MD trajectories show the same trend, although the correlation
with Py is insignificant. Finally, we used experimental meltin

temperatures of EHs as indicators for enzyme flexibility,

which vyielded the same relation with Py as computed
flexibility characteristics. The partial use of comparative models
rather than crystal structures throughout this study may lead to
concern. Yet, our consistent and robust findings indicate that
when applying this workflow to novel EHs, including to those
for which no crystal structure exists but a structural homolog
with a sequence identity >25%, it should be possible to
discover enzymes with “sufficient” substrate promiscuity to
serve as a starting point for further exploration in
biotechnology and synthetic organic chemistry. In that respect,
the flexibility characteristics of EHs analyzed here have a
notably stronger predictive power than the active site effective
volume introduced earlier”" (Figure S15 and Tables S11 and
S12). Still, besides flexibility, the size and architecture of the
active site may be further determinants of catalytic
promiscuity.G5

The finding that promiscuous EHs are significantly globally
less flexible and have less flexible catalytically active residues
than specific EHs is in stark contrast to the general view of the
role of structural flexibility for promiscuity:** Besides the
examples of CYP and f-lactamase mentioned above, the
possibility of dynamically restructuring active sites has also
been recognized for other systems as underlying their
promiscuity.”*"® Finally, interactions between antibodies
and antigens are a prominent example of the canonical
relationship between flexibility and binding promiscuity: as
antibodies mature to become more affine, their flexibility is
decreased,’ although in some cases, an initial increase in
flexibility may be required for the evolution before subsequent
mutations result in a rigidity increase.”

It has been recognized that conformational changes may not
always be necessary for promiscuity if a variety of substrates
can be bound by partial recognition or the presence of multiple
binding sites.” However, these cases do not seem to be relevant
reasons for EH promiscuity because partial recognition often is
associated with catalytic inefficiency, which is contrary to our
observation that Pgy correlates with EH activity, and the
presence of multiple binding sites that could give rise to
promiscuity is controverted by the finding that promiscuous
EHs have large active site effective volumes,”' i.e., large pockets
with a few subpockets. Inversely, our findings of rigid
promiscuous EHs may be consistent with the idea that
multiple ligands can be accommodated in a single site by
exploiting diverse interacting residues (Figure S).

Our results as to specific but flexible EHs may be reconciled
with a model according to which conformational changes may
have been selected in EH evolution for their ability to enhance
specificity in recognition (Figure S), resulting in what has been
termed conformational proofreading.'® In the case of specific
EHs, flexibility may help overcome a structural mismatch
between the enzyme and its substrate existing when both are in
their ground states, enhancing recognition specificity. This
view is corroborated by our finding that specific EHs prefer to
hydrolyze large and flexible substrates: Larger substrates can
form more interactions with the enzyme, helping overcome the
deformation energy required by the enzyme to optimizing the
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Figure S. Mechanistic model of EH flexibility, ligand size, and
conformational dynamics affecting Py Impact of esters with (A)
many or (B) few TA on specific, and hence more flexible (left), and
promiscuous, and hence more rigid (right), EHs. Ligand parts
connected by TA are represented as blue circles. Specific EHs and
large ligands with many TA can mutually adapt (panel A, left), and
promiscuous EH can bind large ligands (panel A, right) and small
ligands (panel B, right) exploiting different interaction partners. Small
(and/or rigid) ligands are not able to lead to a structural adaptation of
specific EHs (panel B, left), though resulting in conformational
proofreading. The red bars indicate the flexibility of the EHs. A green
tick (red cross) indicates that ester cleavage is (not) catalyzed.

correct binding probability over the incorrect one; flexible
substrates can tolerate higher strains and thus can be expected
to participate in more binding events’"’> (Figure 5). In that
respect, the relation between structural flexibility of EHs and
promiscuity found here is more causative than that between
active site effective volume and promiscuity,”’ because small
active site effective volumes found for specific EHs cannot
rationalize why specific EHs prefer to hydrolyze large and
flexible substrates.

In summary, the combined large-scale analysis of exper-
imental EH promiscuity and computed EH flexibility reveals
that promiscuous EHs are significantly less flexible than
specific ones. This result is counterintuitive at first but may be
reconciled with a model according to which multiple ligands
can be accommodated in a single active site of promiscuous
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EHs by exploiting diverse interacting residues, whereas
structural flexibility in the case of specific EHs serves for
conformational proofreading. Our results furthermore signify
that an EH sequence space, charted, e.g,, by (meta)genomic
studies, can be screened by rigidity analyses for promiscuous
EHs that may serve as starting points for further exploration in
biotechnology and synthetic organic chemistry.
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