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Abstract: Glutamine synthetase (GS) in the liver is
expressed in a small perivenous, highly specialized he-
patocyte population and is essential for the maintenance
of low, non-toxic ammonia levels in the organism. How-
ever, GS activity can be impaired by tyrosine nitration of
the enzyme in response to oxidative/nitrosative stress in a
pH-sensitive way. The underlying molecular mechanism
as investigated by combinedmolecular simulations and in
vitro experiments indicates that tyrosine nitration can
lead to a fully reversible and pH-sensitive regulation of
protein function. This approach was also used to under-
stand the functional consequences of several recently
described point mutations of human GS with clinical
relevance and to suggest an approach to restore impaired
GS activity.
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Introduction

There is a sophisticated structural and functional organi-
zation of ammonia and glutamine metabolizing pathways
in the liver acinus (Häussinger 1983) (for review see Häus-
singer 1990). Glutamine synthetase (GS) is restricted to a
small perivenous hepatocyte population surrounding the
hepatic venules, whereas periportal hepatocytes contain
liver-type glutaminase (GLS2) and urea cycle enzymes
(Gaasbeek Janzen et al. 1984; Gebhardt and Mecke 1983;
Häussinger 1983) (for a review see Häussinger 1990; Häus-
singer and Schliess 2007). GLS2 is activated by its product
ammonia and acts as an intramitochondrial pH-modulated
ammonia amplifier. This amplification step is required for
urea synthesis in view of the high Km (ammonia) of carba-
moylphosphate synthetase I, which exceeds by far the
physiological ammonia concentration in portal venous
blood. Ammonia amplification by GLS2 is very pH sensitive,
which provides one basis for adjusting flux through the
bicarbonate-consuming urea cycle to the needs of acid-base
balance (for review see Häussinger 1990). Ammonia that
escaped periportal urea synthesis is eliminated with high
affinity by GS-containing hepatocytes at the acinar outflow.
Thus, in the liver acinus, glutamine is hydrolyzed in peri-
portal hepatocytes, whereas it is resynthesized by peri-
venous hepatocytes from the ammonia left over by
periportal urea synthesis (Figure 1). This is the so-called
intercellular glutamine cycle, whose regulation is essential
for the maintenance of bicarbonate and ammonia homeo-
stasis in the organism. Depending on the acid-base status,
that way, the liver can switch ammonia elimination from
urea to glutamine synthesis.

Characteristics of perivenous GS-expressing
hepatocytes

The perivenous GS-containing hepatocytes have also
been termed scavenger cells because they eliminate not
only ammonia with high affinity but also at least some
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signalmolecules before the acinar blood enters the systemic

circulation (Häussinger and Stehle 1988). Perivenous scav-

enger cells are well equipped for their task to eliminate

ammonia with high affinity through glutamine synthesis.

They are the only hepatocytes also expressing the ammo-

nium transporter RhBG, the glutamate/aspartate transporter

Glt1, ornithineaminotransferase (OAT), andspecifically take

up glutamate and related dicarboxylates (Cadoret et al.

2002; Ginguay et al. 2017; Kuo et al. 1991; Stoll and Häus-

singer 1991; Weiner et al. 2003) (Figure 1). The ß-catenin

pathwaycritically controls the zonal distributionofGS,OAT,

RhBG, and axin2 (Leibing et al. 2018; Merhi et al. 2015;

Sekine et al. 2006, 2007; Yang et al. 2014). Axin2 is a uni-

versal transcriptional target of β-catenin-dependent Wnt

signaling, and axin2- and GS-positive cells surrounding the

central vein have been implicated in the homeostatic

renewal of the liver (Wang et al. 2015). In line with this, a

recent study on proteome profiling of separated

GS-expressing hepatocytes identified several proteins being

highly enriched in perivenous GS-expressing hepatocytes

compared to GS-negative hepatocytes (Paluschinski et al.

2021). Among theseproteins, heat shockprotein 25 andbasic

transcription factor 3 (BTF3), which triggers undifferenti-

ated, stem cell-like properties in prostate tumor cells (Hu

et al. 2019), were identified (Paluschinski et al. 2021). This

study also suggested that GS-positive hepatocytes may not

be uniform, but may comprise subpopulations, because

immunohistochemistry showed that only 50–70% of the

GS-expressing hepatocytes also expressed Hsp25 and BTF3
(Paluschinski et al. 2021).

Liver glutamine synthesis and ammonium
homeostasis

Destruction of the perivenous area in rat liver by applying
appropriate doses of CCl4 impaired ammonia removal in
perfused rat liver by the abolition of glutamine release,
whereas urea synthesis remained unaffected. This finding
suggestedan important role of perivenous scavenger cells in
maintaining ammonia homeostasis. The suggestion was
confirmed by the finding that liver-specific deletion of GS in
mice, without affecting other scavenger cell markers, such
as Glt-1, OAT, and RhBG, triggered systemic hyper-
ammonemia in vivo with corresponding sequelae such as
cerebral protein tyrosine nitration and RNA oxidation
(Qvartskhava et al. 2015). Downregulation of liver GS is also
observed in human liver cirrhosis (for review seeHäussinger
1990), which may contribute to the development of hyper-
ammonemia in cirrhosis. Interestingly, hyperammonemia
was also observed in taurine transporter (TauT) knockout
mice (Qvartskhava et al. 2019). In young (three months old)
TauT k.o. animals, this was due to a downregulation of
RhBG-mediatedammoniauptake intoperivenous scavenger
cells. By contrast, in older animals (12 months old), hyper-
ammonemia was due to an inactivating protein tyrosine
nitration of liver GS (Qvartskhava et al. 2019).

Figure 1: Structural–functional organization of hepatic glutamine and ammonia metabolism.
Following the bloodstream, ammonia removal by urea and glutamine synthesis are organized in sequence. Periportal urea synthesis is a high-
capacity, but low-affinity system for ammonia removal, whereas downstream glutamine synthetase corresponds to a high-affinity system for
ammonia removal. Liver glutaminase (GLS2) acts as a pH-modulated ammonia amplifier and adjusts bicarbonate-consuming urea synthesis to
the needs of acid-base homeostasis. Perivenous glutamine synthetase expressing hepatocytes (so-called “perivenous scavenger cells”) also
express Glt1, RhBG, and OAT to allow for high-affinity ammonia removal via glutamine synthesis. Adapted from Häussinger (1990).
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GS and protein tyrosine nitration

Protein tyrosine nitration (PTN) of liver GS not only
occurs in old TauT-knockout mice, but also after expo-
sure to lipopolysaccharide (LPS) (Görg et al. 2005). PTN of
GS in the human brain was observed in epilepsy (Bidmon
et al. 2008), after ammonia exposure of rat astrocytes and
portocavally shunted rats (Schliess et al. 2002), in
hypoosmotically or benzodiazepine-treated astrocytes
(Häussinger and Görg 2010), as a response to genetic
deletion of GS in mice (Qvartzkava et al. 2015), and in the
brain from humans with liver cirrhosis and hepatic
encephalopathy (Görg et al. 2010).

Previous analyses of sequences and structural and
functional aspects revealed three classes of GS. Of these,
GS class II enzymes occur in eukaryotes and a few bacteria
families (Darrow and Knotts 1977; Edmands et al. 1987;
Kumada et al. 1990), and human GS belongs to this class
(Liaw and Eisenberg 1994). Its 10 identical subunits form a
homodecamer in which two pentameric rings stack against
each other (Krajewski et al. 2008) (Figure 2A). The β-barrel-
shaped catalytic sites are harbored in the interfaces
between twoneighboring subunits, resulting in 10 catalytic
sites. Computational (Issoglio et al. 2016; Moreira et al.
2017) and in vitro experiments (Eisenberg et al. 2000; Liaw
and Eisenberg 1994; Wedler and Boyer 1972; Wedler and
Horn 1976) on GS-catalyzed glutamine synthesis and
ammonia detoxification suggest a two-step catalytic
mechanism (Figure 2B). First, adenosine triphosphate
(ATP) binds to the catalytic site and induces conforma-
tional changes necessary for glutamate binding. After
transfer of the terminal phosphate group of ATP to the
γ-carboxylate group of glutamate yielding adenosine
diphosphate (ADP) and γ-glutamyl phosphate (GGP), an
ammonium ion binds to a negatively charged site (Moreira
et al. 2017) and is deprotonated to ammonia as the nucle-
ophile (Krajewski et al. 2005; Moreira et al. 2016, 2017).
Ammonia then attacks GGP, and glutamine, ADP, and
inorganic phosphate are released (Moreira et al. 2017).

Mass spectrometry of peroxynitrite-exposed sheep GS
showed that PTN occurred in the highly conserved YFEDR
motif of GS, likely targeting Y336 (Figures 2C and 3A), and
resulted in inactivation of GS (Görg et al. 2005, 2007). PTN
modifies key properties of a tyrosine residue, including the
phenol group pKa, redox potential, hydrophobicity, and
volume (Batthyany et al. 2017; Radi 2013). Free energy
computations predicted that the binding affinity of ATP to-
wards Y336-nitrated GS is significantly reduced relative to
non-nitrated GS, but only in the presence of the deproto-
nated and negatively charged 3′-nitro tyrosinate (Frieg et al.

2020). By contrast, in the presence of the neutral 3′-nitro
tyrosine, the computations suggested a more favorable
binding affinity of ATP (Frieg et al. 2020). This observation
could be explained by an electron-withdrawing effect of the
nitro group that likely reduces repulsive forces between the
phenyl ring and the electron-rich purine ring system of ATP
(Martinez and Iverson 2012), promoting favorable stacking
interactions (Frieg et al. 2020). The negatively charged
3′-nitro tyrosinate not only reversed this effect but intro-
duced increased repulsive forces, explaining the decreased
affinity towards ATP (Frieg et al. 2020). By contrast,
configurational free energy computations indicated that
Y336 nitration only weakly influences the kinetics of ATP
binding (Frieg et al. 2020), which is at variance with the
prediction for tyrosine nitration in human manganese su-
peroxide dismutase, according to which a drastically
increased energetic barrier for ligand entry results (Demi-
cheli et al. 2016; Moreno et al. 2011).

The pKa value of the phenolic hydroxyl group of free
3′-nitrotyrosine is ∼7.3 (Radi 2013) and was calculated to
decrease to ∼5.3 in the case of nitrated Y336 within human
GS (Frieg et al. 2020) (Figure 3B).Hence, under experimental
conditions previously chosen (Görg et al. 2005, 2006, 2007)
andat physiological pHof 7.4, >99%ofnitratedY336 exist as
3′-nitro tyrosinate according to the computed pKa. By
contrast, at pH 4, ∼95% of the nitrated Y336 exist as 3′-nitro
tyrosine. Indeed, the catalytic activity of Y336-nitrated GS
could be restored at pH 4 in vitro, whereas it was reduced at
pH 6 and 7 (Figure 3C). These results indicate a fully
reversible and pH-sensitive mechanism for regulating pro-
tein function by tyrosine nitration (Frieg et al. 2020).

Congenital GS deficiency

Although defects of urea cycle enzymes in humans have
been known for decades, it was in 2005when the first cases
of human glutamine synthetase mutations were described
(Häberle et al. 2005, 2006) (for review see Spodenkiewicz
et al. 2016). Two mutations have been described initially,
R324C and R341C, but the list of mutations is growing
(Bennett et al. 2020; Spodenkiewicz et al. 2016). In addi-
tion, also a homozygous deletion of the Glul gene has been
reported (Roifman et al. 2020). The R324 and R341C muta-
tions result in early neonatal death accompanied by mul-
tiple organ failure, severe cerebralmalformations, and skin
abnormalities (Häberle et al. 2005, 2006). By contrast, a
patient with a homozygous R324S mutant (Häberle et al.
2011) showed developmental delay and neurological
impairment, but survived six years (Spodenkiewicz et al.
2016). Here, glutamine supplementation improved the
clinical condition (Häberle et al. 2012).
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R324 is part of the catalytic site (Krajewski et al. 2008),
and we showed that it is directly involved in ATP binding
(Frieg et al. 2016a) (Figure 4A). Molecular simulations
revealed that the direct interaction is lost in both the R324S

andR324C variants (Frieg et al. 2016a). However, this loss is
partially compensated by indirect, water-mediated in-
teractions between the sidechains of S324 or C324 and the
β-phosphate group of ATP (Figure 4B) (Frieg et al. 2016a).

Figure 2: Structure of the human glutamine synthetase.
A: 3D structure of human glutamine synthetase (GS) (PDB-ID 2QC8 [Krajewski et al. 2008]). The 10 individual subunits are colored
differently, with atoms depicted as sphere-model. The bound ADP (dark blue sphere-model) is in the catalytic site in the interface of two
adjacent subunits. B: Schematic visualization of glutamine synthesis catalyzed by GS (Eisenberg et al. 2000). The structural models of apo
GS, GS bound to ATP, ATP and glutamate, and ADP and γ-glutamyl phosphate (GGP) were taken from (Frieg et al. 2016a). C, D: Dimeric GS
model, in which two neighboring subunits form a single catalytic site, complexing the substrates ATP, glutamate, and magnesium ions.
Amino acids identified as a target for tyrosine nitration (Bartesaghi et al. 2016; Görg et al. 2005) (B) or as clinically relevant mutation sites
(Bennett et al. 2020; Häberle et al. 2005, 2011; Spodenkiewicz et al. 2016) (C) are shown as yellow or cyan sphere-models, respectively. In
panels B–D, ATP, ADP, glutamate, GGP, and magnesium ions are shown as dark blue or gray sphere-models, respectively.
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The indirect interactions were significantly more frequent
in the case of R324S than R341C, explaining why the R324S
variant likely conserved a higher level of residual activity
(Figure 4C) (Frieg et al. 2016a).

No cure is currently available for targeted treatment of
inborn GS deficiency (Häberle et al. 2012). We hypothesized
that molecules bridging the S324/ATP interaction better
thanwater result in tighter ATP binding, that way (partially)
restoring („repairing“) GS activity. We focused on trime-
thylglycine (betaine) as one such molecule (Frieg et al.
2016b) since it spontaneously bound to the correct epitope in
the vicinity of S324 and weakly stabilized ATP in molecular
simulations. Furthermore, it is a safe, well-tolerated, and
inexpensive substance and has been used to improve serum
levels of liver enzymes in the context of fatty liver diseases
(NASH) (Abdelmalek et al. 2001; Barak et al. 1996; Craig
2004). Betaine and structural analogs are currently being
investigated concerning their in vitro potency to restore the
R324S GS activity.

In the R341C GS, a long-range interaction that causes
catalytic inhibition of GS was identified (Frieg et al. 2016a).
Inwild type GS, R341 is pointing away from the catalytic site
and not directly involved in substrate binding (Frieg et al.
2016a). Instead, it interacts with amino acids harbored on
the solvent-exposed helix H8, particularly H281, H284, and
Y288 (Figure 4D). Molecular simulations suggested that
R341C significantly reduces themechanical stability around
helixH8 (Frieg et al. 2016a). For glutamate tobind toGS,ATP
needs to induce a structural rearrangement of helix H8
(Krajewski et al. 2008). Consequently, glutamate binding
was predicted to be disfavored in the R341C variant relative
to wild type GS, and functional in vitro experiments
corroborated the prediction (Frieg et al. 2016a).

Recently, several suspected cases of patients carrying
novel variants of the GS were reported (Bennett et al. 2020;
Spodenkiewicz et al. 2016) (Figure 2D). As we previously
investigated all relevant stages of the GS catalytic cycle
towards glutamine (Frieg et al. 2016a), we use these results
to suggest explanations at the structural level for impaired
GS activity.

A case report of a five-year-old boy with severe
epileptic encephalopathy was associated with two prob-
ably damaging mutations, A195D and R319H (Spodenkie-
wicz et al. 2016). A195 forms a hydrophobic pocket with
C163 and W202 but is not directly involved in substrate
binding (Figure 4E). Interestingly, the neighboring E196 is
relevant for glutamate binding and Mg2+ coordination ac-
cording to our structural models (Frieg et al. 2016a)
(Figure 4E). The introduction of a negatively charged
aspartate in the case of the A195D GS likely weakens the

Figure 3: pH-sensitive inhibition and activation of human GS.
A: ATP (blue) and tyrosine 336 (Y336, yellow) are depicted as a
sphere-model in our ATP-bound model of GS (Frieg et al. 2020). B:
Schematic of the effect of tyrosine nitration. Nitrationof free tyrosine
decreases the pKa of the phenolic hydroxyl group by three log units
(Radi 2013), leading to an equilibrium between 3-nitro tyrosine and
3-nitro tyrosinate at physiological pH (adapted from ref. Radi 2013).
In GS, the calculated phenolic pKa decreases by two additional log
units (Frieg et al. 2020), such that the deprotonated state is
preferred at physiological pH. C: pH-dependent and ONOO−-
mediated inhibition of GS activity. Purified human GS was exposed
to ONOO− at concentrations of 0, 100, or 200 µM, and aliquots were
taken formeasuringGSactivity. GS activity in vehicle-treated control
at pH 7 was set to 1, and activities measured under the other
experimental conditions are given relative to it. *: statistically
significantly different. n.s.: not statistically significantly different.
Taken from ref. Frieg et al. (2020).
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hydrophobic contacts, which may displace E196 and,
thereby, hamper glutamine synthesis. R319 is highly
conserved in prokaryotes and eukaryotes (Eisenberg et al.
2000), suggesting an essential catalytic function. R319
binds to the terminal phosphate group of ATP during the
first steps of glutamine synthesis and the phosphate groups
of ADP and GGP during the later catalytic stages
(Figure 4F), suggesting that R319 is essential for the
phosphate transfer from ATP to glutamate. Substitution by
histidine will likely weaken such interactions.

Another case report of two siblings with myoclonic
epilepsy revealed two novel mutations, K14N and a
non-sense mutation leading to a stop codon in the GLUL
gene (Bennett et al. 2020). There are several interesting
similarities and dissimilarities between these patients and
previously described ones (Bennett et al. 2020). As to GS,
the most interesting difference is that the latest variants
result in a non-lethal phenotype, suggesting a GS residual
activity, which was, however, not further verified (Bennett

et al. 2020). Prediction of functional effects by PolyPhen-2
(Adzhubei et al. 2010) suggests K14N as “probably
damaging”. This effect may be explained in that K14 con-
tributes to an ionic-interaction network in the dimerization
interface, likely contributing to the inter-subunit stability
(Figure 4G). Substitution by asparagine leads to a loss of
salt-bridges to D174 and D213, which likely destabilizes GS.
As the patients’ mutation is compound heterozygous
(Bennett et al. 2020), with one allele still carrying fully
functional GS, the non-lethal phenotype may also result
from a reduced amount of functional GS.

Concluding remarks

GS has a decisive role in the intercellular glutamine cycle,
whose regulation is essential for the maintenance of
bicarbonate and ammonia homeostasis in the organism.
Tyrosine nitration of the enzyme in response to oxidative/

Figure 4: Structural interpretation of clinically relevant GS mutations.
The structural model of the human GS bound to ATP, glutamate, and Mg2+ ions (Frieg et al. 2016a) allows for the structural interpretation of GS
mutations. The enzyme structure is shown as cartoon model with subunits colored green and orange. ATP, glutamate, Mg2+ ions, and relevant
amino acids are depicted as sphere-model. Amino acids targeted by mutagenesis are colored cyan. A, B: Close up view of the catalytic site. The
wild type R324 interacts directly with the β-phosphate group of ATP (A). Instead, R324S uses an indirect, water-mediated interaction to stabilize
the substrate (B). C:Mean relative occurrence (error bars denote the standard error of themean) of water-mediated hydrogenbonds that connect
the β-phosphate group of ATP and residues S324 or C324 in the GS variants (adapted from Frieg et al. 2016a). Strong and weak hydrogen bonds
were defined by distance cutoffs of 2.8 and 3.2 Å (Desiraju and Steiner 2001). The stars indicate a significant difference (p < 0.05) D: Interactions
between R341 and H281, H284, and Y288 on helix H8 (colored brown). These interactions are lost in R341C GS, leading to destabilization of H8,
which, in turn, hampers structural adaptationmechanisms required for glutamatebinding (Frieg etal. 2016a). E:A195 formsahydrophobic pocket
with C163 and W202 and is in the immediate neighborhood of E196, which binds to glutamate and Mg2+. F: R319 is part of the catalytic site and
complexing the phosphate groups of ATP (left) or ADP and the reactive intermediate γ-glutamyl phosphate (GGP) (right). G: K14 contributes to a
hydrogen-bond network involving amino acids from two adjacent subunits, likely contributing to the inter-subunit stability.
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nitrosative stress impairs GS activity in a pH-sensitive
way. Combined computational and experimental studies
indicate that tyrosine nitration can lead to a fully revers-
ible and pH-sensitive regulation of protein function. GS
catalyzes the ligation of glutamate and ammonia in a
complex two-step catalytic mechanism. The impact of
point mutations leading to congenital GS deficiency has
been described in atomistic detail. This understanding
could provide the basis to restore impaired GS activity.
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