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ABSTRACT: Protein domains are independent, functional, and
stable structural units of proteins. Accurate protein domain
boundary prediction plays an important role in understanding
protein structure and evolution, as well as for protein structure
prediction. Current domain boundary prediction methods differ in
terms of boundary definition, methodology, and training databases
resulting in disparate performance for different proteins. We
developed TopDomain, an exhaustive metapredictor, that uses
deep neural networks to combine multisource information from
sequence- and homology-based features of over 50 primary predictors. For this purpose, we developed a new domain boundary data
set termed the TopDomain data set, in which the true annotations are informed by SCOPe annotations, structural domain parsers,
human inspection, and deep learning. We benchmark TopDomain against 2484 targets with 3354 boundaries from the TopDomain
test set and achieve F1 scores of 78.4% and 73.8% for multidomain boundary prediction within ±20 residues and ±10 residues of the
true boundary, respectively. When examined on targets from CASP11-13 competitions, TopDomain achieves F1 scores of 47.5% and
42.8% for multidomain proteins. TopDomain significantly outperforms 15 widely used, state-of-the-art ab initio and homology-based
domain boundary predictors. Finally, we implemented TopDomainTMC, which accurately predicts whether domain parsing is
necessary for the target protein.

■ INTRODUCTION
Knowing the 3D structure of a protein is important to
understand its function1 and modify its interactions2 with
small molecules or other proteins.3 Consequently, protein 3D
structure determination is a key part of molecular biology and
drug discovery. To resolve protein 3D structures, the most
commonly used experimental methods are X-ray crystallog-
raphy,4 nuclear magnetic resonance spectroscopy (NMR),5 and
cryogenic electron microscopy.6 However, these methods are
time-consuming and costly, and especially large, multidomain,
flexible, or transmembrane proteins are not easy to resolve.7−10

Computational structure prediction is faster and cheaper than
experiments, but since it uses experimental data as a foundation,
it faces similar problems for predicting large multidomain or
transmembrane proteins.11,12

Protein domains are independent units that function, evolve,
and fold independently and are structurally stable.13 An
estimated 70% of all proteins are multidomain.14 Multidomain
proteins are more abundant in eukaryotes than prokaryotes15,16

because multiple domains give proteins an evolutionary
advantage for folding reliability,17 structural stability, and new
complex functions.18,19 Thus, studying multidomain proteins is
needed to understand and potentially modulate complex
biological processes, such as signal transduction20 and host−
pathogen interactions.21 Furthermore, experimental deletion of
domains can reduce protein flexibility and improve protein
solubility, making it easier to experimentally determine protein

3D structure if domain knowledge is available.22 Finally, cutting
multidomain proteins into domains makes it faster and more
accurate to search through template databases and predict
protein structures by computational methods.23 Knowing the
domain boundaries of a protein is therefore highly demanded.
However, even when structural information is available,

determining boundaries between protein domains may be
difficult, a problem known as domain parsing. The difficulties
arise partly due to algorithmic limitations and partly due to the
diverse evolutionary processes that lead to different domain
architectures, including exon shuffling,24 uneven crossover
during sexual reproduction,25 and gene copying.26 These
processes give rise to domain patterns such as sequential,
inserted, and repeated domains. Accordingly, protein domain
annotation databases such as CATH27 and SCOPe28 use a
combination of human manual annotation, Hidden Markov
Model (HMM) comparison, and structure-based methods to
annotate domains. HMM-comparison methods29−37 identify
boundaries by domain conservation, but they are highly
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database-dependent, and not all boundaries appear between
conserved sequence segments. Three-dimensional structure-
based methods38−40 use 3D coordinates to derive boundary
predictions by measuring atomic connectivity between residue
regions but rely on general rules fitting for most domains and in
turn lack contextual evolutionary knowledge of the protein.
Furthermore, since they use a static input structure, they cannot
account for structural flexibility.
Historically, domain boundary predictors (DBPs) can be

categorized as homology-based or ab initio methods and
generally use CATH or SCOPe annotations or both as the
target boundary labels to predict. For homology-based
DBPs,41−45 the principle is to search through known protein
structure- and family databases using one or more HMM-
comparison methods, PSI-BLAST searches, or threading
algorithms. The boundary information is then mapped from
the template to the target sequence using the resulting
alignments. Although homology-based DBPs can perform
well, their performance depends on the availability of structural
homologues and the ability to accurately identify them. Ab initio
DBPs fall into two groups: statistical methods and machine
learning-based methods. Statistical DBPs46−48 infer domain
boundaries using statistical regularities of features such as
domain size, residue propensity, and hydrophobicity distribu-
tion. Machine learning-based DBPs49−54 predict boundaries by
training models such as support vector machines, random
forests, or neural networks on combinations of residue
physiochemical properties, predicted structural properties such
secondary structure, solvent accessibility, or residue contacts,
and position-specific scoring matrices (PSSMs) generated by
PSI-BLAST.55 Although ab initio DBPs do not need to find a
matching structure in a database to predict domain boundaries,
their accuracy is generally lower than homology-basedDBPs due
to the lack of detailed structural information.
In the last few decades, many DBPs have been developed that

vary in terms of domain boundary definition, methodology,
machine learning algorithms, and training databases. Therefore,
different methods perform differently for different kinds of
proteins and domain boundaries. However, this diversity
provides an ideal foundation for a metapredictor,41,45 which, if
correctly designed, can result in more accurate and stable
predictions than any of its constituent DBPs. Here, we present
TopDomain, an exhaustive metapredictor that combines over
50 different primary predictors to provide accurate domain
boundary predictions. To train TopDomain, we developed a
new domain boundary data set termed the TopDomain data set,
which was annotated by structure- and evolution-based
automatic methods and, additionally, extensive iterated manual
annotation guided by deep learning. In Stage 1 of TopDomain,
we extract multisource information from over 50 diverse primary

predictors. In Stage 2, to reduce the feature space, we classify
each residue based on its distance to a domain boundary using
multiple deep neural networks (DNNs). In Stage 3, the reduced
informative features of Stage 2 are used for a final DNN to
estimate a boundary score using a Gaussian kernel, which is then
smoothened and turned into binary predictions using peak
detection. We benchmark our TopDomain methods against all
widely used and available stand-alone DBPs and find far superior
performance for all quality metrics. Hence, TopDomain can aid
experimentalists and computational biologists in resolving or
predicting large multidomain protein 3D structures by
accurately cutting them into domains.

■ METHODS AND IMPLEMENTATION

Overview. There are four different TopDomain methods
with different goals, inputs, and outputs. These methods are
summarized in Table 1.

Domain Parsing Necessity. When presented with a new
protein sequence for structure elucidation, the first question
arising is “Is it necessary to parse the sequence into domains, or
is there a good template available that covers all domains?” To
answer this question, we made a predictor termed Top-
DomainTMC (TMC = Template Modeling Coverage). This
predictor is built on the rule that parsing the sequence into
domains is not required if a template is found that (1) covers at
least 80% of every interboundary sequence segment and (2) has
a predicted TM-Score,56 a measure of similarity between a
template and a reference structure, above 0.5, indicating correct
global fold and domain orientation.56 TopDomainTMC requires
three components: (I) prediction of domain boundaries by
TopDomain (see below) to evaluate the coverage of each
interboundary sequence segment by a given template; (II)
prediction of the TM-Score of each of the templates identified
by each of the primary methods of TopDomain; (III) a decision
method that returns 0 if cutting the sequence into domains is not
required and 1 if it is required, based on the results of
components I and II and the rule defined above. A detailed
description of TopDomainTMC can be found in the Supporting
Information (SI, text T1).

TopDomainParse. To have a fast prediction method for a
known protein structure, we devised a fast and accurate parser
for predicting domain boundaries if only the native structure is
used as an input. For example, this would be useful if further
simulation or calculations on a known structure is needed, but
only for a specific domain. To achieve this, we trained a set of
DNNs that predicts domain boundaries based on the output
from DDOMAIN,38 DomainParser2,39 and SWORD,40 three
structure-based primary DBPs, which take the native structure as
an input. These DNNs were trained in the same way as the other
TopDomain methods (see next section), and we call the

Table 1. Overview of TopDomain Methodsa

method input sequence features homology features structure features output competitor

TopDomain sequence yes yes yes* domain boundaries ThreaDom
TopDomainSeq sequence yes no no domain boundaries ConDo
TopDomainParse structure no no yes** domain boundaries DDOMAIN
TopDomainTMC sequence yes yes no parsing decision −

aTopDomain takes a sequence as input and uses both sequence- and homology-based features, as well as structure-based features (* from
templates), to predict domain boundaries. TopDomainSeq takes a sequence as input and uses only sequence-based features to predict domain
boundaries. TopDomainParse takes a structure as input and uses only structure-based features (** from the input structure) to predict domain
boundaries. TopDomainTMC takes a sequence as input and uses templates and boundaries identified by TopDomain to predict whether parsing the
sequence into domains is required based on the coverage of each interboundary sequence segment by a given template.
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resulting predictor TopDomainParse. Since TopDomainParse uses
the native structure as an input, it cannot be compared to other
DBPs since their input is the native sequence. Therefore, we
compare TopDomainParse to DNNs trained in the same way as
DNNs for other primary predictors (see section DNN Input in
Features) on the output of only DDOMAIN,DomainParser2, or
SWORD.
TopDomain Architecture. TopDomain consists of three

stages (Figure 1): (1) multisource feature generation from

primary predictors (Stage 1); (2) multiclass classification of
domain boundary distance using three different DNNs with
different sliding window sizes of ±10, ±20, and ±40 residues
(Stage 2); (3) boundary score regression using DNNs with a
sliding window size of ±40 residues and binary boundary
assignment using peak detection (Stage 3). Using two stages of
DNNs allows us to (1) reduce the vast input feature space to its
most informative features, (2) use different sliding window sizes
to capture different types of boundary signals, and (3) improve
boundary detection by oversampling the less common boundary
classes during classification.
To evaluate the impact of using homology-based information

(i.e., templates and DBPs that search structure-derived data-
bases) in addition to using sequence-based information alone,
we trained two different predictors: TopDomain and Top-
DomainSeq. TopDomainSeq uses only input features calculated
from the target sequence and from methods that use the target
sequence and search sequence databases, whereas TopDomain
uses all available information (sequence- and homology-based).
We expect that TopDomain will perform better than Top-
DomainSeq, since this method utilizes all the available
information, but TopDomainSeq may yield better predictions
in cases where no reliable template information is available.
Data Sets. TopDomain Data Set. Because of the large set of

primary predictors used in TopDomain, the data set for training
and validation has to be of limited size to save computational

resources during feature calculation but of high quality. Here, a
brief outline of the data set generation is given; for a detailed
description, see SI Text T2. The TopDomain data set is available
at http://dx.doi.org/10.25838/d5p-19. We used the Astral
SCOPe data set28 as a starting point and clustered it to 20%
identity for single-domain proteins and 70% identity for
multidomain proteins. First, we carefully inspected structure-
based predictions from DomainParser239 and DDOMAIN38

and the original SCOPe annotations and used these as a basis for
manually annotating all domain boundaries. Using these initial
annotations as a target, a preliminary classification DNN was
trained. Its predictions were used to inform the human manual
re-evaluation and careful reannotation of the data set to rectify
mistakes. This DNN was only used to highlight potential errors
in the initial manual annotation, and not to annotate the data; all
annotations were carried out manually by human inspection.
The DNN was subsequently discarded and not used for any of
the TopDomain methods to prevent any potential bias. This
resulted in 3105 multidomain and 1035 single-domain proteins,
which are manually annotated based on structure-based
prediction, SCOPe annotations, and human inspection
informed by DNN predictions. Finally, we used an in-house
algorithm to split the data set into training (80%) and test (20%)
parts, termed the TopDomain training set and TopDomain test
set, respectively. No two proteins sharemore than 20% sequence
identity between these two splits, but the data sets are otherwise
similar in protein size, the number of boundaries, and prediction
difficulty. During training, the TopDomain training set is split
into 80% used for weight-adjustment of the DNNs and 20% used
as validation to prevent overfitting using early stopping (see
TopDomain Stage 2 section).
To emulate different prediction difficulties in terms of

availability and quality of template information, homology-
based DNNs (for TopDomain and primary predictors that rely
on homology information) were trained on the TopDomain
training data set using three upper cut-offs for sequence identity
of homology-based information: 90%, 60%, and 30%. As such,
the homology-based DNNs see different amounts of template
information during training and learn to balance the use of
sequence- and homology-based information. Each homology-
based DNN thus uses the information from all three different
sequence identity cut-offs (i.e., their training targets were three
times more than for sequence-based DNNs). They cannot,
therefore, learn to only rely on high-quality homology-based
information (high identity template information) but have to
balance sequence-based and homology-based features to get
optimal performance across a wide range of template qualities.
For homology-based predictors, the final TopDomain

training data set contains 9936 targets and 13425 boundaries:
For each of the three different sequence identity cut-offs, there
are 2486 multidomain proteins containing 4475 boundaries
(75%) and 826 single-domain proteins (25%). For sequence-
based predictors, the final TopDomain training data set contains
3312 targets and 4475 boundaries, since no sequence identity
cutoff is imposed.
For homology-based predictors, the final TopDomain test

data set contains 2484 targets and 3354 boundaries: For each of
the three different sequence identity cut-offs, there are 619
multidomain proteins containing 1118 boundaries (75%) and
209 single-domain proteins (25%). For sequence-based
predictors, the final TopDomain test data set contains 828
targets and 1118 boundaries, since no sequence identity cutoff is
imposed.

Figure 1. TopDomain architecture. In Stage 1, the target sequence is
used as input for 53 primary predictors (see DNN Input section and SI
T3 and T4) for multisource feature calculation. In Stage 2, the features
are used as input for six DNNs with different sliding window sizes; three
DNNs use only sequence-based features (TopDomainSeq) and three
DNNs use both sequence- and homology-based features (Top-
Domain). These DNNs each predict the residue distance to a boundary
in terms of distance bins. In Stage 3, the output of the Stage 2 DNNs is
used to train two regression DNNs; one uses the multiclass distance
predictions from sequence-based features (TopDomainSeq) and one
uses the multiclass distance predictions from both sequence- and
homology-based features (TopDomain). The boundary probabilities
from TopDomainSeq and TopDomain are smoothened and used to
assign discrete boundaries in the target sequence by peak detection.
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CASP Data Set. Furthermore, to validate TopDomain,
TopDomainSeq, and TopDomainParse on an external data set, in
which boundary definitions are not based on our careful manual
curation, we used the CASP11, CASP12, and CASP13 proteins
and the domain boundaries provided by the CASP organizers as
the true domain boundary annotations. To emulate the
availability of template information at the time of the CASP
competitions, we impose a 30% sequence identity cutoff when
running TopDomain, TopDomainSeq, and TopDomainParse on
this data set. The data set is termed the CASP domain data set.
Because of the more limited homology-based information, the
higher number of single-domain proteins compared to the
TopDomain data sets (47% and 25% respectively), and the
greater difficulty of CASP targets, we expect the performance of
all predictors on this data set to be lower than on the
TopDomain test data set.
Features. To account for the large diversity of proteins and

domain architectures, primary predictors are used for Top-
Domain that generate diverse information from multiple
sources, which can nevertheless be classified into two overall
types of input features. The first feature type consists of
boundary predictions. These include homology-based predic-
tions from ThreaDom,41 InterProScan57 (including all of its
component primary predictors), DOMPRED,42 and FIEF-
Dom,43 which are used by TopDomain but not TopDomainSeq.
Furthermore, they include ab initio predictions from Scooby-
Domain,47 PPRODO,54 DOBO,51 DROP,49 DomPro,52

DOMCUT,46 ConDo,50 and DeepDom,53 used by TopDomain
and TopDomainSeq. The second feature type consists of
predictions that can aid boundary prediction. These predictions
include homology-based features and sequence-based features.
Homology-Based Features. One important feature type is

derived from template information obtained by running various
threading methods58−63 on domain databases and structure
databases.28,44,64 The templates are then analyzed with DSSP65

and the structure-based domain parsers DDOMAIN, Domain-
Parser2, and SWORD.38−40 These differ from homology-based
primary predictors (e.g., ThreaDom) since the predictions from
structure-based domain parsers show boundary locations in
identified templates rather than the target protein. The accuracy
of these features thus depends on the accuracy of the domain
parser as well as the correctness of the identified template and
themapping between template and target. The resulting features
(boundaries, secondary structure, solvent accessibility, and
dihedral angles) are mapped back to the target sequence using
the threading alignments. These features are not used by
TopDomainSeq. A detailed description of the homology-based
features is given in SI Text T3.
Sequence-Based Features. In addition to homology-based

features, sequence-based features calculated from the target
sequence are used. The rationale behind the use of these features
is that domain boundaries and protein domains are highly
diverse. Therefore, information about the target protein will aid
in the prediction of domain boundaries. The sequence-based
features include PSSM features and position-specific gap
propensities as well as predictions of generic structural features,
such as secondary structure,66−68 solvent accessibility,67,69

dihedral angles,67 residue disorder,48,70−72 and residue−residue
contacts.73−79 They also include specific structural features such
as transmembrane topology,80−82 presence of signal peptides,83

domain repeats and solenoid repeats,84−86 and coiled-coil
regions.87,88 To account for inaccuracies in predicted features
from a single method, multiple methods are used for each type of

feature to allow the DNNs to learn from a diverse set of
predictions. These features are used by both TopDomain and
TopDomainSeq. A detailed description of the sequence-based
features is given in the SI Text T4.

DNN Input. In total, the DNN input comprises 208 features
for TopDomain, 156 features for TopDomainSeq, and seven
features for TopDomainParse derived from 24 homology-based,
29 sequence-based, and three structure-based domain parser
DBPs. A detailed description of the conversion of features for
DNN input is given in SI Text T5.
To compare the performance of TopDomain, TopDomainSeq,

and TopDomainParse with the performance of the primary DBPs
in a fair manner, DNNs were also trained for each primary DBP
on the TopDomain training set. That way, the performance of a
primary DBP becomes comparable regardless of the boundary
definitions or data sets used when each respective DBP was
created because the optimization in terms of DNN architecture,
DNN training, cutoff estimation, and peak detection is identical
for all DBPs. The only difference is the input features, which
derive either from the output of a specific DBP or a combination
of features (TopDomain, TopDomainSeq and TopDomainParse).
We expect good primary DBPs to give informative outputs,
which, when used as features for the DNNs, result in accurate
predictions, and vice versa.

Deep Neural Networks. TopDomain Stage 2. There are
twomain goals of TopDomain Stage 2: First, it captures different
types of boundary peaks using sliding window sizes of±10,±20,
and ±40 residues. The different window sizes are motivated
because some boundary signals may span many residues, for
example, in long flexible or disordered linkers, but others may
comprise only a few residues, for example, in a tight hinge
between domains. The former can be well captured by a large
sliding window and the latter by a small one. Second,
TopDomain Stage 2 assigns each residue the probability to be
in one of six classes based on the residue distance to a true
boundary and minimizes the penalty of misclassification. Using
multiclass classification is motivated by the improvement in
residue contact prediction obtained by classifying distance bins
rather than binary contact cut-offs.89 The six boundary classes
are boundary residues (distance of 0 residues), residues near
boundaries (distance of 1−5, 6−10, 11−15, or 16−20 residues,
respectively), and nonboundary residues (distance >20
residues). In total, this results in 18 output probabilities per
residue from 3 window sizes and 6 boundary classes.
For TopDomain Stage 2, we use a Residual Network

(ResNet), a type of deep convolutional neural network for
image recognition.90 In traditional deep neural networks,
backpropagation requires the multiplication of many small
partial derivatives, one for each layer. This effect causes the
gradients of the loss function to shrink to zero for networks of
many layers, causing them to stop learning. To resolve this
vanishing gradient problem,91 the ResNet architecture provides
residual connections straight to earlier layers. Traditionally, an
image is composed of an ordered array of pixels with different
color channels. In TopDomain, each “image” is a sliding window
of the target sequence, with each residue in the window serving
as a pixel in this 1D image. For each residue, each one of the
different features calculated by the primary predictors is stored
as a “color channel”.
To learn the probability of each boundary class, a ResNet with

18 layers, categorical cross-entropy loss function,92 and a
softmax activation function92 of the last layer is used. The input
shapes of the DNNs vary based on the DBPs and the window
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size. The hyperparameters, including the oversampling scheme,
learning-rate scheduler, and early stopping criteria, are identical
for all primary DBP networks as well as for TopDomain,
TopDomainSeq, and TopDomainParse. For further details on
TopDomain Stage 2, see SI Text T6 and Table S2.
TopDomain Stage 3. The main goal of TopDomain Stage 3

is to detect boundary residues by prediction of a single boundary
score for each residue. This is done by using the 18 output
probabilities of Stage 2 as input features along with a 19th
feature called the “Stage 3 filtering score”. This score is a binary
feature designed to separate putative boundary residues
(distance ≤20 residues) from nonboundary residues (distance
>20 residues) based on the nonboundary probability predicted
by the Stage 2 DNNs. The score is based on cut-offs for each
DNN (Table S1), calculated by maximizing the harmonic mean
of the fraction of nonboundary residues above the cutoff and the
fraction of boundary residues below it (eq 1).

= +
‐ ‐ ‐ ‐

−i

k
jjjjjj

y

{
zzzzzz

N

N

N

N
Goodness Boundary

Boundary below cutoff

Nonboundary

Nonboundary above cutoff

1

(1)

The filtering score is one if the nonboundary probabilities of all
three Stage 2 DNNs are below their respective cut-offs and zero
otherwise. That way, the Stage 3 filtering score separates regions
of the protein with significant Stage 2 boundary signals from
regions without.
The Stage 3 DNNs are ResNets with 50 layers and a window

size of ±40 residues to predict a single boundary score by
regression.93 For each residue, there are 1539 input features
from the 18 + 1 features mentioned above times 81 residues in
the window. The input feature space is mapped to one value for
identifying a boundary and diminishing false-positive signals.
This boundary score is defined by eq 2.

= −rScore( ) ei
D k( / )i

2

(2)

Score(ri) is the boundary score of residue ri in the sequence,Di is
the distance of that residue to the nearest true boundary, and k is
the width of the kernel. We use a kernel size of 10 to avoid
penalizing residues close to a boundary for being predicted as
boundaries but still giving the DNNs an incentive to predict
boundaries as close to the true position as possible. This differs
from previous methods, where multiple residues near the
boundary are considered equally probable (e.g., all residues
within ±20 positions of a boundary or all linker residues
between domains).51 The Stage 3 DNNs were trained on 80% of
the TopDomain data set as training data and 20% as validation
data to prevent overfitting. All hyperparameters, including the
oversampling scheme, learning-rate scheduler, and early
stopping criteria, are identical for all primary DBPs as well as
for TopDomain, TopDomainSeq, and TopDomainParse. For
further details on TopDomain Stage 3, see SI Text T7 and
Table S2.
In order to smoothen the raw DNN output, we use Gaussian

kernel smoothing with the same functional form as eq 1 and a
kernel size of 3 residues, which is equivalent to a 1D convolution
operation. To assign specific positions as boundaries, peak
detection is used on the smoothened boundary score. The peak
detection parameters selected are peak height and peak
prominence (the distance between a peak and the nearest
other peak). These parameter were optimized by a grid-search to
maximize the F1 score of each predictor using the strict quality
criterion (see section Quality Criteria) (Table S3). The
boundary region is predicted as a function of peak height.

This prediction is based on a logistic function fitted on the 1σ
(68%) confidence interval of the distance between predicted and
true boundary (Figure S2). For further details on peak detection
and boundary region prediction, see SI Text T8. The peak
detection and boundary region prediction is optimized
identically for each primary DBP as well as TopDomain,
TopDomainSeq, and TopDomainParse.

TopDomainTMC. The main goal of TopDomainTMC is to
inform the user if parsing the input sequence into domains
before structure prediction is required for accurate template-
based structure prediction. This task requires two additional
DNNs, the first of which predicts the TM-Score of a given
template with respect to the native structure and the second of
which uses the predicted TM-Score and the template coverage
of the predicted interboundary segments based on the boundary
prediction from TopDomain to predict whether parsing the
sequence into domains is necessary.
The first task is accomplished by a multilayer perceptron

regression network92 since only a single score is needed for each
template and the number of input features is limited. This
network considers 11 input features for each template (sequence
coverage, identity, and similarity between template and target
and agreement between structural features measured in the
template and predicted for the target, e.g. secondary structure,
solvent accessibility, dihedral angles, and residue contacts). The
target value is the TM-score,56 which measures structural
similarity between the template and the target structure ranging
from 0 (mismatch) to 1 (perfect match). The network is
designed with eight layers and uses the sigmoid activation
function to scale the output between 0 and 1. As for other
TopDomain DNNs, this network was trained on the templates
from 80% of the TopDomain training data set and validated on
the templates from the remaining 20% to prevent overfitting.
The second task is accomplished by a multilayer perceptron

classification network with six layers and uses the binary cross-
entropy loss function to classify the target as either requiring
domain parsing or not. The final prediction is that domain
parsing is not needed for accurate structure prediction if at least
one template is classified as good enough. The templates that
informed this decision are reported. Otherwise, the prediction is
that domain parsing is required.

Method Availability. A stand-alone package for Top-
Domain alongside the installation of our other TopSuite server
packages on which TopDomain depends is available at https://
cpclab.uni-duesseldorf.de/topsuite/standalone_download.
html.

Quality Criteria. The most common quality criterion for
domain boundary prediction in literature is to classify predicted
boundaries within 20 residues of the true boundary as
correct.41,51,53 Given this criterion, termed the literature
criterion, the precision, recall, and F1 score for the boundary
prediction is calculated. However, the literature criterion could
potentially classify predicted boundaries as correct even if these
boundaries were to place entire secondary structure elements on
the wrong side of the boundary or cut secondary structure
elements into pieces. Furthermore, this criterion can leave a
large fraction of the protein as an acceptable boundary.
To estimate the impact of the quality criterion on the

predictor performance, we designed a simple random boundary
predictor called RanDom. This predictor only uses the sequence
length as input. It predicts random boundaries in the sequence
following only two rules: (1) Starting at 80 residues, place one
boundary for every 80 residues in the protein up to a maximum
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of ten boundaries. (2) Do not place a boundary closer than 40
residues to an existing boundary or the termini of the sequence.
We evaluated the performance of RanDom for different distance
cut-offs on the TopDomain data set. Surprisingly, for the
literature criterion, RanDom obtains a precision, recall, and F1
score of 19.8%, 44.4%, and 27.4%, respectively, which is better
than some primary DBPs (Table S4).
Therefore, in addition to the literature criterion, we use the

strict criterion. Here, a boundary is considered correctly
predicted if placed within ±10 residues of the true boundary.
At this cutoff, RanDom obtains a precision, recall, and F1 score
of 10.2%, 22.8%, and 14.1%, respectively, which is again better
than some primary DBPs (Table S5).
Finally, we use the residue distance between predicted and

true boundary as a criterion for prediction quality. This is done
to examine how close to the true boundary predictions from
different DBPs can be expected to be, since boundaries closer to
the true boundary minimize the chances of accidentally
assigning secondary structure elements to the wrong domain
or cutting secondary structure elements in pieces.

■ RESULTS
TopDomain Data Set. The TopDomain data set consists of

two data sets, the TopDomain training data set (3312 proteins
with 4475 boundaries) and the TopDomain test data set (828
proteins with 1118 boundaries). The relationship between the
number of proteins and number of boundaries for different
sequence lengths across the whole TopDomain data set can be
seen in Figure S1. No two proteins in the TopDomain test data
set or the TopDomain training data set share more than 20%
sequence identity, but otherwise the two data sets are similar in
terms of protein size distribution, distribution of number of
protein boundaries, and prediction difficulty.
TopDomainTMC Performance. To evaluate the perform-

ance of TopDomainTMC to estimate the TM-Score of the

templates identified by primary threaders, we calculate the
Pearson’s coefficient of determination (Pearson’s R2) and the
mean-squared error (MSE) between the predicted and true TM-
Scores of each template identified by primary threaders for the
TopDomain test set (Figure 2A). The results indicate good
performance for estimating the template TM-Score.
To evaluate the performance of the TopDomainTMC, we

evaluate the decision to cut the protein at the predicted domain
boundaries or not (based on predicted boundaries and predicted
template TM-Scores) compared to the true decision (based on
true boundaries and true template TM-Scores).Most proteins in
the data set do not require domain parsing (Figure 2B) since at
least one reliable template with decent coverage and correct
domain orientation tends to be identified. Thus, we used the F1
score to focus on the True Positive class (Parse) and weight
precision and recall equally. We expect that as sequence identity
gets lower and the templates become more distantly related to
the target sequence, the decision performance will decline. The
results of this analysis are shown in Figure 2B. These results
show a stable and high performance for TopDomainTMC, which
declines only slowly with a dropping identity of the identified
templates. Furthermore, as the identity of the identified
templates declines, the likelihood increases that TopDomainTMC
predicts that domain parsing is required. Finally, as expected,
when no cutoff is imposed (100% sequence identity permitted),
domain parsing is predicted for virtually no targets.

Stage 2 Performance. To evaluate the performance of the
Stage 2 DNNs, we calculated the ability of the Stage 3 filtering
score (a feature calculated from the Stage 2 DNN output) to
focus on putative boundary residues (boundary distance ≤20
residues) compared to nonboundary residues (boundary
distance >20 residues) and, thus, function as an informative
feature for Stage 3. For each DBP, we calculated the retention
(percentage of true boundaries with a filtering score of 1) and
the reduction (percentage of residues with a filtering score of 0).

Figure 2. TopDomainTMC performance. (A) Correlation between predicted and true TM-Score for templates identified by primary threaders for
proteins of the TopDomain test set. Predictions are binned, and the mean (red line) and asymmetric standard deviations (gray shaded areas) are
calculated for each bin. One and two standard deviations above and below the mean are indicated in dark and light gray, respectively. (B) F1 score of
TopDomainTMC decision function (red line) and percentage of targets predicted to require domain cutting (black line) plotted as a function of
maximum sequence identity permitted for identified templates. TopDomainTMC constantly shows high performance for classifying whether the target
sequence needs to be parsed into domains. As the identity of the identified templates declines, the likelihood increases that domain parsing is required.
Both panels A and B are based on the TopDomain test set (2484 targets, 268214 templates).
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The retention shows the recall a DBP would obtain if the
filtering score were the decider of boundary prediction, while
reduction shows how much the filtering score can focus the
attention of the DNN to a small subset of the data. An
informative feature will limit the boundary search space (high
reduction) while maintaining a high potential recall (high
retention). The results are shown in Figure 3. They demonstrate

that, for Stage 2, TopDomain has the overall best retention and a
reduction smaller by only ∼10% than FIEFDom and DomPro;
however, the latter two DBPs show the worst retention of all
DBPs. TopDomainSeq’s retention is almost as high as Top-
Domain’s, with ∼10% smaller reduction.
Stage 3 Performance. To evaluate the performance of

Stage 3 DNN boundary scores, we calculated the area under the
receiver−operator characteristic curves of the boundary scores
of TopDomain methods as well as primary DPBs (Figure 4; see
Figure S3 for a plot of all DBPs). This analysis shows that scores
of TopDomain methods outperform the best primary DBPs in
terms of their ability to separate boundaries from non-
boundaries. TopDomainSeq even slightly outperforms Threa-
Dom despite not using any homology-based information.
To evaluate the performance of the Stage 3 boundary

prediction (which takes both the boundary score and the peak-
detection performance into consideration), we calculated the
Matthews correlation coefficient (MCC) for classifying a
protein as single- or multidomain and precision, recall, and F1
score for boundary prediction in multidomain proteins. Proteins
with any boundary predicted are classified as multidomain; all
others are classified as single-domain. The scores are calculated
for all primary DBPs and TopDomain predictors (TopDomain,
TopDomainSeq, and TopDomainParse). We compare the
performance of each TopDomain predictor to the best primary
DBPs for three categories: homology-based, sequence-based,
and structure-based prediction (Figure 5, see Tables S4 and S5
for numerical values for all DBPs). The scores are calculated
based on the literature criterion (Figure 5A, Table S4) and the
strict criterion (Figure 5B, Table S5). When using the strict
quality criterion, the performance gaps between TopDomain
methods and primary DBPs are even more pronounced for
boundary prediction in multidomain proteins (Figure 5B),
indicating that TopDomain methods predict boundaries closer

to the true position than other DBPs. Performances are
evaluated both on the TopDomain test data set and the CASP
data set.
As to boundary prediction in multidomain proteins, Top-

Domain significantly outperforms the best homology-based
DBP ThreaDom, TopDomainSeq significantly outperforms the
best sequence-based DBP ConDo, and TopDomainParse
significantly outperforms the best structure-based DBP
DDOMAIN on the TopDomain test data set. TopDomainSeq
even outperforms homology-based DBPs such as DOMPRED,
InterProScan, and FIEFDom (Tables S4 and S5). It is also clear
that the template information used in TopDomain significantly
(p < 0.0001, McNemar’s test94) improves performance
compared to TopDomainSeq. Both TopDomain and Top-
DomainSeq are more accurate than TopDomainParse, which
may initially seem surprising considering that these methods do
not have access to the 3D information in the native structure.
However, TopDomainParse lacks evolutionary information,
which is apparently more severe since evolutionary processes
cause domain boundaries.
On the CASP data set, performance drops for all predictors

compared to the TopDomain test set. This is likely due to the
limitations on homology-based information (template identity
limited to 30%) and sequence information (CASP targets are
difficult to predict also for ab initio methods due to fewer
sequence homologues) for this data set.

Figure 3. Stage 2 performance for different DBP on the TopDomain
test data set. The x-axis shows the reduction (percentage of residues
with a Stage 3 filtering score of 0) and, hence, the ability of the filtering
score to focus on a small subset of the input data. The y-axis shows the
retention (number of true boundaries with a filtering score of 1) and,
hence, how well the filtering score identifies all true boundaries.
Structure-based DBPs are indicated in black and sequence-based DBPs
in gray. TopDomain is highlighted in red and TopDomainSeq in orange.

Figure 4. ROC of TopDomain and Primary DBP scores. This figure
shows the receiver-operator characteristic curves for the best primary
DBPs and TopDomain methods and the area under the curve (AUC)
for each predictor. These scores reflect the ability of each DBP score to
separate nonboundary residues from boundary residues. They do not,
however, reflect how boundaries are assigned, since boundary
assignment depends not only on the score of an individual residue
but also on the height and prominence of the entire boundary peak.
Homology-based predictors are shown in red, sequence-based
predictors are shown in blue, and structural-based domain parsers are
shown in yellow. The black diagonal line reflects a random boundary
score, which has equal probability of assigning a residue as boundary
and nonboundary. Performance is calculated for the TopDomain test
set (1857 multidomain targets and 627 single-domain targets, 3354
boundaries).
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For classifying single- and multidomain proteins, the
TopDomain predictors are overall slightly (1−10 MCC points)
worse than the best primary DBPs on the TopDomain test set,

which applies especially for TopDomainParse. This result reflects
that the TopDomain training data set contains mostly
multidomain proteins (75% multidomain) to emulate the

Figure 5. TopDomain Stage 3 performance classifying proteins as single- or multidomain and for boundary prediction in multidomain proteins. The
performance is calculated using the literature criterion (boundary distance≤20 residues) (A) and the strict criterion (boundary distance≤10 residues)
(B). The ability to classify single- vs multidomain proteins is evaluated in terms ofMCC and shown in cyan bars. The boundary prediction performance
is evaluated in terms of precision, recall, and F1 scores, shown in blue, green, and red bars, respectively. Performance is compared to the best primary
DBPs (in terms of F1 score) for each category: TopDomain and ThreaDom (homology-based), TopDomainSeq and ConDo (sequence-based), and
TopDomainParse and DDOMAIN (structure-based). Performance is calculated for the TopDomain test set (1857 multidomain targets, 3354
boundaries) and the CASP domain data set (82 multidomain targets, 304 boundaries). Significant differences between TopDomain methods
(TopDomain, TopDomainSeq, TopDomainParse) and primary DBPs are calculated using McNemar’s test94 and indicated with brackets (*p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001).
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proportion of single- andmultidomain proteins found in real life.
The CASP data set (53% multidomain), on the other hand, and
training data sets used by other primary DBPs are highly biased
toward single domain proteins.50,53,95 This difference in
database compositions slightly biases TopDomain methods to
predict boundaries in single-domain proteins. By contrast, DBPs
like ConDo and DDOMAIN are highly biased toward not
predicting any boundaries and classifying most proteins as
single-domain, resulting in low recall values (Figure 5, Tables S4
and S5). Finally, as to applications in template-based structure
prediction, given that TopDomainTMC confidently tells the user
whether cutting a protein at the predicted boundaries is
necessary (Figure 2), slightly overpredicting boundaries in
single-domain proteins is much less of a concern than under-
predicting boundaries in multidomain proteins.
For the primary DBPs, the high performance of ThreaDom is

likely because it uses more sophisticated homologue detection
(multiple threading algorithms) than InterProScan (HMM-
Comparison and PSI-BLAST), DOMPRED (PSI-BLAST), and

FIEFDom (PSI-BLAST). Similarly, the high performance of
ConDo is likely because it is the only one of all the tested
primary DBPs using coevolutionary information. There is a
notable difference between boundary detection precision and
recall for several primary DBPs. ConDo, DOMpro, and
FIEFDom have very low recall compared to precision, indicating
a high bias toward predicting single-domain proteins. In
contrast, DOMCUT and PPRODO have low precision
compared to recall, indicating a high bias toward overpredicting
boundaries and classifying proteins as multidomain (Tables S4
and S5).

Distance to the True Boundary. Precision, recall, and F1
score give good estimates of the global quality of the boundary
prediction. To evaluate the local quality of the predictions, we
examined histograms of the distance between predicted and true
boundaries (Figure 6). The results reveal not only that
TopDomain, TopDomainSeq, and TopDomainParse perform
globally better than the best primary DBPs but that boundaries
predicted by them are also closer to the true boundaries.

Figure 6. Distributions of the distance between predicted and true boundaries on the TopDomain test set. Homology-based DBPs (A), sequence-
based DBPs (B), and structure-based DBPs (C). TopDomain, TopDomainSeq, and TopDomainParse show a shift toward lower distances compared to
the best primary DBPs in each category. The number of true boundaries in the CASP data set was too few to give proper sampling in each distance bin
for an informative analysis.

Figure 7. F1 score as a function of the highest sequence identity between a homologue and the target sequence as evaluated on the TopDomain data
set. The scores are calculated based on the literature criterion (A) and the strict criterion (B). The F1 score of homology-based DBPs generally
decreases as the maximum sequence identity drops. The performance of ConDo and TopDomainSeq are indicated as references, as these are
independent of template information. TopDomain shows a much smaller decline than other DBPs, indicating a more robust performance regardless of
the availability of homology-based information.
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Figure 8. TopDomain and ThreaDom comparison. (A, B) 1EI5_A from the TopDomain test data set has three domains, including two repeat
domains. TopDomain accurately identifies both boundaries due to two pronounced peaks (A). However, the second boundary has a large confidence
range due to its low peak height. ThreaDom completely fails to detect this second boundary between the repeat domains (B). The boundary score of
ThreaDom shows no peak for the missed boundary, indicating that the failure does not stem from failed peak detection. (C, D) 1NT2_B from the
TopDomain test set has three domains separated by two boundaries. TopDomain is only able to identify one boundary since peak detection fails to
detect the first peak (C). This failure is probably because this boundary is not found by any other primary DBP except ThreaDom. ThreaDom correctly
identifies both boundaries since the peaks are pronounced enough for both (D). However, the first boundary has a large confidence range due to its low
peak height.

Figure 9.TopDomainSeq and ConDo comparison. (A, B) 1ATG_A from the TopDomain test set has two domains, a discontinuous one (blue) and an
inserted one (orange). TopDomainSeq predicts both domains correctly due to two pronounced peaks in the boundary score (A). ConDo fails to predict
any boundaries in this protein (B). The boundary score of ConDo shows no peaks for the missed boundaries, indicating that the failure does not stem
from failed peak detection. (C, D) 5H5L_B from the TopDomain test set has two domains separated by one boundary. TopDomainSeq fails to identify
this boundary since peak detection fails to detect this peak (C). This failure is probably because this boundary is not found by any other primary DBP
except ConDo. ConDo correctly predicts this boundary since the boundary score peak is pronounced enough (D).
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Dependence on Structural Information.We expect that
as the sequence identity to the closest template decreases and
the detection of true templates becomes more difficult, the
performance of homology-based predictors will decrease. To
quantify this trend, we binned the predictions on the
TopDomain data set according to the highest sequence identity
obtained for each homology-based DBP. We then calculated the
F1 score for homology-based DBPs for each bin and compared
their performance to the F1 scores of the best sequence-based
DBPs, TopDomainSeq and ConDo, which are independent of
homology-based information. The results are shown in Figure 7.
TopDomain shows a much smaller decline than other DBPs,

indicating a more robust performance regardless of the
availability of homology-based information and the used quality
criterion. ThreaDom has better performance for medium
sequence identity ranges (30−50%) than for high ones, possibly
resulting from originally being trained in the absence of highly
homologous templates. Other homology-based DBPs show a
decrease in performance as sequence identity declines, most
notably for InterProScan.
Because TopDomain predicts boundaries at the local level,

using a sliding window approach, the prediction performance is
calculated at the per-boundary level rather than at the protein
level and is independent of protein size or boundary number.We
expect certain protein classes to be harder to predict than others
(such as transmembrane proteins and intrinsically disordered
proteins), likely because these protein classes are experimentally
more difficult to resolve and thus more sparsely populated in
structure databases. This, in turn, limits training data and makes
homology detection more difficult.

Example Cases. To improve our understanding of the
underlying reasons for the performance differences between
TopDomain methods and the different primary DBPs, we
examined many targets for which TopDomain predictions differ
from the best primary DBPs. In particular, we examined the
performance of TopDomain compared to ThreaDom (Figure
8), TopDomainSeq compared to ConDo (Figure 9), Top-
DomainParse compared to DDOMAIN (Figure 10), and
TopDomain compared to ThreaDom on CASP targets (Figure
11).
Overall, the examples illustrated in Figures 8−11 indicate the

difficulty of boundary prediction. When TopDomain methods
fail to identify boundaries, it is generally not because of a missing
boundary score signal but because the peak is too weak for peak
detection to assign boundaries given the optimized parameters
(Table S3; Figures 8C, 9C, and 10C). This is often the case
when a boundary is found only by a single primary DBP. On the
other hand, TopDomain methods show superior performance
precisely because the multisource information from the large
number of features for TopDomain allows it to detect
boundaries that are completely missed by some DBPs (Figures
8A, 9A, and 10A). This illustrates the power of integrating
information from multiple sources using DNNs.
Furthermore, the detailed evaluation of several CASP targets

suggests that the lower performance of all DBPs on the CASP
data set results not only from more challenging cases. Instead,
upon human inspection, the true annotations by CASP can be
questioned for several targets (Figures 11). This is likely because
CASP domain annotations are assigned with a different goal
than domain boundary prediction. CASP domain annotations
are used to decide which parts of the target should be evaluated

Figure 10. TopDomainParse and DDOMAIN comparison. (A, B) 1DEK_A from the TopDomain test set has two domains, including a discontinuous
one (blue) and an inserted one (orange). TopDomainParse predicts both domains correctly. However, both boundary peaks have a large confidence
range due to their low peak heights (A). DDOMAIN fails to predict any boundaries in this protein (B). The boundary score of DDOMAIN shows no
peaks for the missed boundaries, indicating that the failure does not stem from failed peak detection. (C, D) 1WNH_A from the TopDomain test set
has two domains separated by a single boundary. TopDomainParse fails to identify this boundary since peak detection fails to detect this peak (C). This
failure is probably because this boundary is not found by any other primary DBP except DDOMAIN. DDOMAIN correctly predicts this boundary
since the boundary score peak is pronounced enough (D). However, the boundary has a large confidence range due to its low peak height.
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together during CASP quality assessment. Thus, it is likely that
for easier CASP targets, some boundaries are omitted because
the annotators deem that these targets should be evaluated in full
and not on a per-domain basis. Similarly, it is likely that for
difficult targets, some boundaries might be assigned to reward
predictors for getting just parts of the model correct, even if
these parts do not constitute independently folding domains in
the evolutionary sense.

■ CONCLUDING REMARKS

Protein domain prediction is often the first step in protein
structure prediction and has a large impact on downstream
predictions such as template identification and prediction of
residue contacts and distances. This is caused in part by the
decreased ability of search algorithms such as PSI-BLAST,55

HMMER,29 and HHBLITS96 to detect correct sequence
matches for long sequences with low sequence identity due to
limited coverage and in part by the sparse representation of
multidomain structures in structure databases like the PDB in
general.
A large multidomain protein may have only a few homologous

sequences or templates available with the same domain
architecture (i.e., a high coverage), but many matches for each
domain individually. This can limit the number of effective
sequences79 for multidomain protein multiple sequence align-
ments, which are the basis for protein property predictions and
template identification. Thus, protein property and structure
prediction may be greatly improved by accurately cutting the
target sequence into domains at the domain boundaries and
subsequently predicting each domain separately. Furthermore,
protein folding simulations with methods such as ITASSER97 or

ROSETTA98 become exceedingly expensive as the size of the
folded sequence increases, making it a feasible option to divide a
protein into domains and fold these individually before
combining them into a full-length model.
We presented two metapredictors of protein domain

boundaries, TopDomain and TopDomainSeq, and a protein
domain parser, TopDomainParse, each of which are the most
accurate to date for boundary prediction in multidomain
proteins compared to any other of many tested state-of-the-art
DBPs. Furthermore, we presented a predictor, TopDomainTMC,
that accurately predicts whether parsing the protein into
domains before structure prediction is needed based on the
available templates and their domain coverage and orientation.
Finally, we developed a simple rule-based random predictor,
RanDom, as a baseline, which only uses the sequence length and
two generic rules to predict boundaries. Unexpectedly, some
DBPs from literature performed on par with or worse than
RanDom for several quality metrics (Tables S4 and S5).
As expected, we found ThreaDom to be the best homology-

based primary DBP, followed by the commonly used
InterProScan. This is likely due to these DBPs more
sophisticated methods for template detection. We found that
the best ab initio primary DBP is ConDo due to its sophisticated
use of coevolution information and deep learning.
Different primary DPBs offer different advantages. Homol-

ogy-based methods are often the most accurate but slower to
compute, and their performance depends both on the
availability of template structures and the ability to detect
them correctly. Sequence-based methods are often less accurate
but faster to compute and perform better when sequence
information is available but structure information is not.Ab initio

Figure 11. TopDomain and ThreaDom comparison on CASP. (A,B) T0771 from CASP 11 is considered a two-domain protein with two boundaries
by CASP. The first boundary separates a small disordered region at the N-terminus. TopDomain considers this protein as single-domain since neither
of the boundary score peaks is pronounced enough for boundary assignment (A). This looks plausible based on human inspection. ThreaDompredicts
one of the CASP boundaries (B). However, the boundary is placed in a helix and has a confidence range spanning almost the entire protein due to its
low peak height. (C, D) T1009 from CASP 13 is considered a single-domain protein by CASP. TopDomain predicts two confident boundaries for this
protein, which upon human inspection look very plausible (C). ThreaDom predicts one of these boundaries but also predicts a second boundary in a
different position, which upon human inspection looks implausible as it is located inside of a beta-strand of a beta-sandwich domain (D).
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methods that rely only on the primary sequence are the fastest to
use but the least accurate. Metamethods such as TopDomain
give the best performance regardless of information availability,
because they combine information from multiple sources at the
cost of a slower computation time.
TopDomain currently predicts only the boundaries between

domains and not the domains themselves. As such, it does not
pair pieces of discontinuous domains into full domains. We plan
to extend TopDomain with a metapredictor that uses the
predicted boundaries to reconstruct discontinuous domains.
TopDomain is available free of charge as a Web server at
https://cpclab.uni-duesseldorf.de/topsuite/topdomain.php.
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