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ABSTRACT: Transmembrane proteins (TMPs) are critical components of cellular life.
However, due to experimental challenges, the number of experimentally resolved TMP
structures is severely underrepresented in databases compared to their cellular
abundance. Prediction of (per-residue) features such as transmembrane topology,
membrane exposure, secondary structure, and solvent accessibility can be a useful
starting point for experimental design or protein structure prediction but often requires
different computational tools for different features or types of proteins. We present
TopProperty, a metapredictor that predicts all of these features for TMPs or globular proteins. TopProperty is trained on datasets
without bias toward a high number of sequence homologs, and the predictions are significantly better than the evaluated state-of-the-
art primary predictors on all quality metrics. TopProperty eliminates the need for protein type- or feature-tailored tools, specifically
for TMPs. TopProperty is freely available as a web server and standalone at https://cpclab.uni-duesseldorf.de/topsuite/.

■ INTRODUCTION

Transmembrane proteins (TMPs) play a vital role in both
eukaryotic and prokaryotic cells. They are essential for several
cellular processes, including signal transduction, molecular
transportation, energy production, and cell adhesion.1 Despite
making up 20−30% of various genomes including the human
one,2−4 TMPs constitute only a small fraction of the resolved
protein structures available today5,6 due to experimental
challenges in structure determination. Interestingly, it is
estimated that more than half of the currently used drug
targets are TMPs.7

TMPs generally fall into two major categories: trans-
membrane α-helical bundles/anchors (TMHs) and trans-
membrane β-barrels (TMBs). While TMHs have seen a lot of
scientific attention,1 TMBs are much more sparsely studied, as
evidenced by both the number of experimentally resolved
structures and the number of computational methods
dedicated to each type.8,9 Due to the location of TMPs in a
bilayer environment and the anisotropic structure of cellular
membranes, TMPs expose hydrophobic residues to the protein
surface in the transmembrane region while having hydrophilic
residues exposed in water environments. As such, the
transmembrane topology (TMT) reveals significant informa-
tion regarding the way a TMP structure is folded and placed
within the membrane. Thus, TMT predictions provide low-
resolution information for TMPs, which can be a helpful
starting point for experimental design or as constraints for
protein structure prediction,1 especially when used alongside
other linear features such as secondary structure (SS),10−13

relative solvent accessibility (RSA),11,13−17 and residue−
residue contacts and distances.18 Furthermore, some methods
have focused on identifying membrane-exposed (ME) residues

based on lipophilicity8,19 and helix−helix interactions20 to be
used as modeling constraints.
While general features such as SS and RSA have frequently

been predicted using deep learning techniques, TMT and ME
features have seen less attention from the deep learning
community due to a higher focus on residue−residue contacts
and distance predictions.21,22 Two classical issues with
standard deep neural networks (DNNs) are the vanishing
gradient problem23 and different random initializations, leading
to different minima for identical model architectures.21,24

Nowadays, these issues have largely been resolved with the
introduction of residual networks25 and the development of
drop-out,26 which has become widely used in bioinformatics
applications such as SS prediction,27 residue contact
prediction,21 and domain boundary prediction.28

So far, the prediction of the different types of linear features
mentioned above has often required different methods specific
to the protein or feature in question. In this work, we present
TopProperty, a metapredictor that predicts the TMT of both
TMHs and TMBs as well as linear features such as SS, RSA,
and ME using DNNs, making it applicable irrespective of
whether a protein is a TMP or not. TopProperty improves the
prediction of these features over existing methods and makes
predictions easier for the user and agnostic to the type of
protein submitted to the server. Finally, TopProperty shows
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robust results, particularly for proteins with a low number of
sequence homologs, making it particularly suitable for de novo
predictions. TopProperty shows better performance than state-
of-the-art primary predictors in terms of Q3 scores, MCC
values, and correlation coefficients for both TMPs and globular
proteins.1

■ MATERIALS AND METHODS
Workflow. The goal of TopProperty is to give robust and

accurate predictions of SS, RSA, TMT, and ME. The
TopProperty workflow has three steps described below and
shown in Figure 1:

1. Primary predictors. The input sequence is submitted to
11 primary predictors to calculate 123 SS/RSA features
and 16 primary predictors to calculate 129 TMT/ME
features (see Input Features below).

2. DNNs. Features are predicted using two ensembles of
1D residue-wise DNNs. The first predicts SS/RSA and
the second predicts TMT and ME. Each DNN in the
ensemble has a different sliding window size to capture
different amounts of local and nonlocal information.

3. Postprocessing. The output of each of the different
DNNs in a given ensemble is combined into a single
score for each residue using a weighted average
according to the performance of each of the different
DNNs across the training dataset (MCC values for
classification networks and Pearson’s R2 for RSA
predictions). This weighted average is presented as the
TopProperty prediction for SS, RSA, and ME. For TMT
predictions, we found that in rare cases, the DNNs
directly interchanged between intracellular (I) and
extracellular/luminal (O) labels, leading to predictions
where they transitioned directly from one to the other
without a membrane label in between. This was resolved
by assigning each solvent-exposed segment the majority
label for the segment and inverting minority labels.

Datasets. Studies have found that many datasets used for
contact prediction show a bias toward targets with many
homologous sequences available.29 This, in turn, leads to a
significant overestimation of prediction performance for de
novo cases, for which such abundance is rarely available. Thus,
special care should be taken to generate unbiased datasets with
respect to the number of sequence homologs.
For TopProperty, we generated four datasets (see Table S1

for the corresponding PDB IDs). The first dataset, termed the

general training set, is based on the PDB and used for the
training of predictors of secondary structure (SS) and solvent
accessibility (SA). The second dataset is based on the
NOUMENON dataset29 and used to evaluate SS and SA
predictions. This dataset is termed the NOUMENON test set.
The last two datasets are based on the Orientation of Proteins
in Membranes (OPM) database30 and are used for training
and evaluation of Transmembrane Topology (TMT) and
Membrane Exposure (ME). These are termed the OPM
training set and OPM test set, respectively.

General Training Set. To avoid bias toward systems with
a high number of sequence homologs in our training set, the
proteins of the general training set were culled from the PDB
using the PISCES server.31 The culling criteria were a pairwise
sequence identity of <20%, resolution of <2 Å, and length of
<500 residues. Nonterminal missing loops in the 3D structure
were added using Rosetta 3.632 and the loop building method
in Modeller9.33 This repair is necessary to obtain a sequence
and structure for which the true features can be determined for
each residue. To measure the amount of sequence information,
we use the number of effective sequences in an MSA generated
by HHBLITS34 (γ) divided by the length of the target
sequence (δ). This measure (γ/δ) is termed the Neff ratio.
Compared to other datasets,29 no bias toward targets with a
high number of sequence homologs is present in this dataset.
Indeed, 23% of the targets have a Neff ratio less than 1, and
67% have a Neff ratio less than 10. Robustness to low amounts
of sequence information is essential when predicting features
for TMPs, which are likely to have shallower alignments. The
final size of the general training set is 3235 proteins.

NOUMENON Test Set. For evaluation of TopProperty
globular predictions, we used the NOUMENON dataset29

after removing 23 proteins that overlap with the general
training set. The NOUMENON dataset is designed to contain
challenging protein targets with a low amount of available
sequence homologs. Missing regions were rebuilt as for the
general training set. The final size of the NOUMENON test
set is 127 proteins.

OPM Datasets. The number of resolved transmembrane
protein structures is significantly smaller than the number of
globular proteins. Therefore, we selected all chains from the
OPM database30 and clustered them at 70% sequence identity
using CDhit.35 Due to experimental difficulties when resolving
structures of TMPs, many OPM entries are partially
incomplete, and others are only partially transmembrane. To

Figure 1. TopProperty architecture. The target sequence is first submitted to 11 SS/SA primary predictors and 16 TMT/ME primary predictors to
generate 123 SS/SA features and 129 TMT/ME features. These input features are used to predict SS/SA and TMT/ME using two ensembles of
DNNs that use sliding windows of different sizes to capture local and nonlocal structural elements. Finally, the outputs of the different DNNs are
combined using a weighted mean and provided to the user.
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obtain a dataset containing complete structures with minimal
information loss, we therefore used the following workflow:

1. Only TMPs were selected from the OPM, requiring that
at least one protein residue must be within 5 Å of the
center of the membrane to be considered.

2. The biological sequence (without experimental artifacts
such as missing or nonstandard residues) of each
structure was matched to the resolved sequence
(which may have missing or altered residues) using
MAFFT7.36 If the identity was over 90% and the chain
ID matched the OPM, the sequence is matched to that
chain; otherwise, it is matched to the chain with the
highest identity.

3. Based on the matched sequences, the structures were
repaired as for the general training set. During repair,
unstructured termini were removed, and unresolved
loops were inserted if the size is <20 residues and
replaced with 20 glycine residues otherwise.

4. DDOMAIN37 is used to parse each structure into
domains. Only TM domains and TM-adjacent domains
were kept. This decreases the size of large, partially TM
systems while maintaining potential interactions be-
tween TM and TM-adjacent domains and improving the
TMT class balance.

5. To establish if the repair procedure changed the input
structures significantly, the repaired structures are
aligned to their raw OPM structure,38 and the Cα

atom root mean square deviation (RMSD) is calculated
for nonloop residues (according to DSSP39). Proteins
with RMSDs of >3 Å were removed.

6. Proteins were reclustered at 70% sequence identity using
CDhit, using the sequences of the repaired structures
rather than the full sequence. Structures having >1000 or
<25 residues were removed. The final structures were
superimposed to the original OPM entry to recover the
membrane orientation.

The final OPM dataset contains 1165 continuous TMPs,
with missing residues either repaired or replaced with
polyglycine loops. This is almost an order of magnitude larger
than the dataset used for benchmarking CCTOP,1 a well-
known transmembrane topology metapredictor. While the
OPM database is not an experimental database, it is a widely
trusted source of membrane protein information. The OPM
dataset entries used for training are single chains, since none of
the primary predictors are able to handle multichain systems.
In some cases, this single-chain limitation may alter ME labels,
e.g., for targets where multiple transmembrane segments
interact in the biological unit. However, overall, we expect
this effect to be minor and opted to keep single-chain
prediction to enable a fair comparison to existing methods.
Because the dataset contains homologs of all TMPs, it is
important to split it into training and test sets carefully. We
clustered the dataset with MMSeqs240 to 20% identity and
separated the dataset by clusters into training and test sets. To
do so, we used a multiple steepest descent algorithm, which
calculates the distribution of different control variables and
optimizes the distribution similarity between the training and
test sets while ensuring that between the splits, no two proteins
share more than 20% identity. This is done similarly as in ref
28. The control variables were selected to minimize bias in the
dataset splitting. We controlled for the relative proportion of
TMHs and TMBs as well as distributions of protein length, Neff

ratio (amount of sequence information), and prediction
difficulty (PHOBIUS Q3 score for TMHs and BOCTOPUS
Q3 score for TMBs).
The two datasets are denoted as the OPM training set and

OPM test set, respectively. The OPM training set contains 933
proteins (80%), totaling 266,880 residues (80%). The OPM
test set contains 232 proteins (20%) and 66,773 residues
(20%). A single protein (1KQFC) was omitted from the test
evaluation set as it was also included in the general training set.
The ratio of TMH to TMB proteins was 8.6:1 in both datasets.
Between the training and test sets, no two proteins have more
than 20% identity, but the datasets are otherwise similar in
terms of their difficulty, protein size, and TMH/TMB
compositions.

Input Features. For the predictions of SS and RSA, the
input features of TopProperty include:

1. Secondary structure (SS) predicted by NetSurfP,14

SSpro5ab initio,
16 DeepCNF-SS,10 PSIPRED4,11 MU-

FOLD-SS,12 SPIDER3,13 and SPIDER3-Single.41

2. Solvent accessibility (SA) predicted by NetSurfP,14

SANN, 1 5 ACCpro5 a b i n i t i o ,
1 6 Ac conP r ed , 1 7

SOLVPRED,11 SPIDER3,13 and SPIDER3-Single.41

3. Φ, Ψ, θ, and τ angles predicted by SPIDER313 and
SPIDER3-Single.41

4. Half-sphere exposure (HSE) and contact number (CN)
predicted by AcconPred,17 SPIDER3,13 and SPIDER3-
Single41 and residue disorder by DISOPRED.42

5. Shannon entropy-based sequence conservation43 and
position-specific scoring matrix log-odds ratios calcu-
lated from an HHBLITS34 alignment after Henikoff−
Henikoff reweighting.44

6. Two global features are used to indicate the amount of
sequence information: The Neff ratio calculated as the
number of effective sequences in the alignment (γ)
divided by the number of residues in the target sequence
(δ) and the Neff score (1 + (γ/δ)−0.5)−1.45 These
measure the number of sequences in the alignment
relative to the protein size on an absolute and
normalized scale and indicate the difficulty of a
prediction given the amount of sequence information.

For the predictions of TMT and ME, the input features of
TopProperty include:

1. TMH topology predictions from TMHMM,3

HMMTOP,46 PHILIUS,47 PHOBIUS,48 POLYPHO-
BIUS,49 OCTOPUS,50 SPOCTOPUS,51 SCAMPI,52

TOPCONS,53 MEMSAT3,54 and PROTEUS.55

2. TMB topology predictions from BOCTOPUS,8 BETA-
WARE,9 and PROTEUS.55

3. Coiled-coil predictions from COILS2,56 helix orienta-
tion from LIPS,19 helix interaction predictions from
RHYTHM,20 and four TMP potentials, three for
TMHs57−59 and one for TMBs.60

4. As for SS and RSA, position-specific scoring matrix log-
odds ratios calculated from an HHBLITS34 alignment
after Henikoff−Henikoff reweighting.44

As the OPM datasets contain close homologs to all TMPs,
structure-based predictions from TOPCONS and PROTEUS
were removed since a structural match is always available and
artificially inflates the performance of these predictors. For the
same reason, the ab initio versions of SSpro5 and ACCpro5
were used for all datasets. The total numbers of input features
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are 123 for the SS/RSA DNNs and 129 for the TMT/ME
DNNs.
Target Scores. The goal for TopProperty is to predict SS,

RSA, TMT, and ME. For SS and RSA, the true values were
calculated with DSSP39 using the three-class classification α-
helix, β-strand, and coil for SS. For TMT and ME labels, the
true label for globular proteins cannot be obtained from
databases like OPM (since these proteins do not appear in the
OPM database). Thus, the prediction of these labels is trained
on the entries of the OPM database for which such labels can
be calculated. For TMT and ME, the true labels were
calculated as follows:
TMT was defined as a three-class label for each residue:

inside the cytoplasm (label I), in the membrane slab (label M),
or outside the cytoplasm (label O). The true labels are based
solely on the position of the residue’s Cα atom relative to the
membrane slab according to OPM-defined protein orientation
and membrane thickness and are independent of their SS class.
ME is defined as a binary class, where a residue is exposed to

the membrane or not. Calculating the true label is more
intricate since TMPs often function as pores or channels, and
therefore, simply using RSA does not suffice; residues inside
the pore are accessible to the solvent but not the membrane.
ME is thus determined for each TM residue segment based on
three variables: the SS and RSA of the residue determined by
DSSP, the angle between the Cα−Cβ vectors, and the vector
from the center of mass of the residues in the membrane to the
Cα atom (denoted as the membrane angle). SS is used to
distinguish TMHs from TMBs, RSA is used to determine
surface residues, and the membrane angle is used to distinguish
residues pointing to the inside of a channel or pore from
residues pointing to the outside. The following rules are used
to determine the true ME label:

1. Only residues with a TMT label M can be exposed.
2. α-Helical membrane residues are exposed if they have

≥40% RSA (fully exposed17) or have ≥10% RSA
(partially exposed17) and a membrane angle of ≤100°.

3. Non-α-helical membrane residues are exposed if they
have ≥10% RSA and a membrane angle of ≤100°. If the
β-strand content of a TM segment is >40%, the
membrane exposure pattern is forced to fit an alternating
sequence of exposed and non-exposed residues,
matching the alternating ME pattern of TMBs.8

4. If a TM segment is one residue long or does not have
>40% α-helix or >40% β-strand residues, all residues in
the segment are assigned as exposed.

Proteins with more than four TM β-sheet segments are
classified as TMBs. Otherwise, if they have any TM α-helix
segment, they are classified as TMHs. If neither of the above is
true, they are classified as TM-other. An example of true TMT
and ME labels is shown in Figure 2.
Quality Metrics. In all cases, the metrics were measured on

a per-protein basis. For three-class SS prediction (α-helix, β-
strand, and coil), we use the Q3 score (fraction of correctly
predicted labels) as well as the per-label and combined
Matthews correlation coefficient (MCC)61 as quality metrics.
For RSA prediction, we use the Pearson’s correlation
coefficient (Pearson’s R) as well as the Q3 score and MCCs
for residue classification into buried (RSA ≤ 0.1), medium (0.1
< RSA ≤ 0.4), and exposed (RSA > 0.4) classes17 as quality
metrics. For TMT prediction, we use the Q3 score as well as
the per-label and combined MCCs, while for ME prediction,

we use the Q3 score as well as the binary MCC. In all per-label
MCC calculations, if the predictions are equal to the true
values, a value of 1 was assigned irrespective of whether the
metric was undefined. In this way, predictions were considered
as correctly classified where, for example, no β-strand or no
buried residues are observed and also not predicted. Statistical
significance of higher scores between TopProperty and other
predictors was evaluated using the one-sided Wilcoxon signed-
rank test as implemented in SciPy62 with an alternative
hypothesis that the median TopProperty difference to the
predictor with which it is compared is greater than 0.

Deep Neural Networks. The neural networks used in
TopProperty are implemented in Python using Keras63 with
the TensorFlow64 back-end and utilities from scikit-learn.65 A
modified ResNetv2 architecture66 from the Keras-Contrib
GitHub repository67 was used to compile the model, changing
2D convolution, averaging, and pooling layers for their 1D
counterparts. Additionally, functions to fork the network after
initial pooling and to converge the predictions into one main
output were included, allowing one to predict multiple outputs
in the same network. The modified code can be downloaded
along with the TopProperty datasets (http://dx.doi.org/10.
25838/d5p-20). To prevent overtraining, a 50% drop-out
ratio26 was set for every convolution layer, evaluating for early
stopping on a 20% split of the data to monitor the loss. To
handle class imbalance, we use class reweighting between the
different SS classes (α-helix, β-sheet, and coil) and TMT
classes (inside, membrane, and outside). Convergence of the
training was enforced by a learning rate reduction on plateaus
of five epochs, starting from 0.01 and reducing it in steps of
√0.1 to a minimum of 1 × 10−5 for SS/SA and 1 × 10−7 for
TMT/ME. For both networks, batches of 500 samples were
fed until all data were seen during an epoch.
The primary features are shaped as sliding window images

with 123 feature channels for SS/RSA and 129 feature
channels for TMT/ME DNNs and differing window sizes,
where the target residue is located in the center of the window.
As the predictions are made per residue, and to favor
generalization across multiple proteins, each batch contained
randomly ordered images from different proteins in the
corresponding training set. For each window size, initial kernel

Figure 2. True TMT and ME labels according to OPM. (A) TM α-
helix bundle (PDB ID: 2B2H_A). (B) TM β-barrel (PDB ID:
1P4T_A). (C) Protein anchored in the membrane by two TM α-
helices (PDB ID: 3RGB_A). Residues labeled outside are shown in
blue; residues labeled inside are shown in orange. Membrane residues
are shown in red if they are not exposed to the membrane and white
with side chains if they are membrane-exposed. Two black horizontal
lines are a visual aid to indicate the membrane slab.
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sizes between 1 and the window size were evaluated, selecting
the top performer for the final model.
The SS/RSA DNNs are an ensemble of four 1D DNNs

trained to predict three-class SS and RSA simultaneously, with
a structure equivalent to ResNet50 and ResNet18, respectively.
For SS predictions, a categorical cross-entropy loss function
with a final softmax layer was used, while for the RSA
predictions, a mean square error loss function and a linear final
layer were implemented as a standard for regression tasks. The
RSA predictions were passed to the SS predictions, setting SS
as the main prediction (see below and Figure S1). A stride of 3
was used, with sliding window sizes of 1, 7, 11, and 23 residues
and initial kernel sizes of 1, 7, 3, and 19, respectively. These
networks thus predict SS and RSA with different amounts of
local and nonlocal sequence information.
For the TMT/ME DNNs, an ensemble of five 1D DNNs

were trained, predicting three-class TMT and binary ME labels
simultaneously. Both network forks are equivalent to
ResNet50s using categorical cross-entropy as the loss function
and a softmax layer to generate the final predictions; the ME
predictions were passed to the TMT dense layer, setting TMT
as the main prediction (Figure S1). These networks are similar
to the SS/RSA networks except that they use a stride of 1 and
sliding window sizes of 5, 9, 11, 17, and 23 residues with initial
kernel sizes of 1, 1, 3, 1, and 23, respectively.
The output of each of the different DNNs in a given

ensemble is combined into a single score for each residue using
a weighted average according to the performance of each of the
different DNNs across the training dataset (MCC values for
classification networks and Pearson’s R2 for RSA predictions).

■ RESULTS

To evaluate TopProperty performance for SS and RSA
predictions, we compared TopProperty to the four best

primary predictors on the NOUMENON test set and the
OPM test set, respectively. The best SS primary predictors
according to the Q3 score were MuFold,12 SPIDER3,13

PSIPRED4,68 and DeepCNF-SS.10 The best RSA primary
predictors according to Pearson’s R were SPIDER3,13

SANN,15 SOLVPRED,68 and NetSurfP.69 The same predictors
but with different relative performances were identified for the
OPM test set. On the OPM test set, we also compared
TopProperty RSA predictions to TMP-SSurface-2,70 a recently
published method specifically trained on TMPs. Although
TopProperty was not trained specifically on TMPs, it
performed equivalently or better compared to TMP-SSur-
face-2. The performance in terms of Q3 scores and MCCs for
the three SS classes is shown in Figure 3A,B for the
NOUMENON test set and OPM test set, respectively. The
RSA performance in terms of Pearson’s R, as well as Q3 and
MCCs for the three RSA classes, is shown in Figure 3C,D.
Comparisons to all primary predictors can be found in Figures
S2 and S3.
Overall, TopProperty performs significantly better than all

predictors in Q3 and MCC for SS and R for RSA on both the
NOUMENON and OPM test sets. This result is also observed
for per-label metrics, with the notable exception of MUFold
predictions of β-strands on the NOUMENON dataset, where
no significant difference was identified, and SPIDER3 Q3
classification for per-residue buriedness. Regarding the latter,
neither method was directly trained to classify buriedness, but
to predict RSA directly, making the Pearson’s R metric a more
appropriate representation of the underlying model.
It is interesting to note that the SS prediction on the

NOUMENON and OPM test sets is comparable between all
predictors except for β-strands, where it has much higher
variance in the predictions for TMPs. This is caused by the
large TMH/TMB imbalance in the OPM datasets, where

Figure 3. Performance of TopProperty SS and the four top-performing SS three-class primary predictors on the NOUMENON test set (A) and the
OPM test set (B), sorted according to the average Q3 score. Performance of TopProperty RSA and the four top-performing RSA primary
predictors on the NOUMENON test set (C) and the OPM test set (D), sorted according to the average Pearson’s R. Significantly higher
TopProperty scores are calculated using the Wilcoxon signed-rank test and indicated with asterisks (*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001). For
numerical values, see Table S2.
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TMHs (which often have no β-strands) make up 90% of the
proteins, but TMBs (which often exclusively have β-strands)
make up 10%. For the RSA predictions, the performance on
the OPM dataset is considerably worse than on the
NOUMENON dataset. This is likely because for TMPs,
solvent accessibility is more difficult to predict due to the
exposure of hydrophobic residues on the surface, where they
are oriented toward the membrane.
To evaluate TopProperty performance for TMT and ME

predictions, we compared TopProperty to the best primary
predictors for TMHs (Figure 4A) and TMB-specific predictors
(Figure 4B), as well as to the popular metaserver CCTOP on
the OPM test set. Comparisons to all primary predictors can
be found in Figure S4. The best TMT primary predictors for
TMHs according to the Q3 score were SPOCTOPUS,
OCTOPUS, and PolyPhobius. BOCTOPUS was better than
BetAware as a TMT primary predictor for TMBs according to
the Q3 score. Similarly as for SS, the TMT performance is
evaluated in terms of Q3 scores and MCCs for the three TMT
classes. TopProperty shows a better performance in Q3 and
MCC on TMT classification for both TMHs and TMBs of the
OPM test set. This is a notable result as TMT predictors are in
general specific to a certain TMP class (either TMH or TMB).
Although CCTop is the second-best method for TMHs and
shows comparable performance to TopProperty for the inside
class, it is only on the fourth rank for TMBs with significantly
lower scores. BOCTOPUS and BetAware, on the other hand,
provide good predictions for TMBs but not for TMHs (see
Figure S4).
For ME predictions, only BOCTOPUS provides a

classification of residues exposed to the membrane and only
for TMBs. Thus, we calculated ME performance for TMHs
without any reference, and for TMBs, we compared Top-
Property to BOCTOPUS (Figure 4C,D). Of the tested
methods, TopProperty is the only one that performs well for
either TM class.
The TopProperty web server provides an easy way for users

to get SS, RSA, TMT, and ME predictions for their protein of
interest. It accepts input sequences between 30 and 1000
residues in length and provides the predictions in an easy-to-
read alignment format and download file. TopProperty is
implemented as part of the TopSuite server,71 which also has
methods for domain boundary prediction,28 protein structure
prediction,72 and protein model quality estimation.72 Figure 5

illustrates the TopProperty predictions displayed on the native
structure with a subset of the output from the TopProperty
web server, and the true values are shown for comparison.
Experimental 3D structures are shown for clarity but do not
reflect the output of the web server, since TopProperty does
not perform protein folding.

Figure 4. TopProperty TMT prediction performance for TMHs (A) and TMBs (B) and ME prediction performance for TMHs (C) and TMBs
(D) on the OPM test set. Significantly higher TopProperty scores are calculated using the Wilcoxon signed-rank test and indicated with asterisks
(*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001). For numerical values, see Table S3.

Figure 5. (A−C) Examples of TopProperty predictions. The native
structure (top and bottom rows) is colored by TopProperty-predicted
(top row) or true (bottom row) properties. The color coding on the
structures is indicated in panel (E). The two black lines are visual aids,
indicating the membrane slab. A subset of the TopProperty web
server output for each protein is shown in the middle row, indicating
the predicted properties and confidences. The web server output is
color-coded according to the predicted properties as indicated in
panel (D); numbers indicate the confidence of the prediction or the
scale of the predicted property. RME is the relative membrane
exposure and reflects the exposure probability scaled from 0 to 9. (A)
PDB ID 2B2H_A (the last letter denotes the chain) is a TM α-helix
bundle from the OPM test set. (B) PDB ID 1P4T_A is a TM β-barrel
from the OPM test set. (C) PDB ID 3RGB_A from the OPM test set
is anchored in the membrane by two TM α-helices.
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■ CONCLUSIONS

We developed TopProperty, a metamethod for predicting
three-class SS, RSA, TMT, and ME. The results are based on
27 primary predictors whose predictions are integrated using
two ensembles of DNNs. TopProperty was trained on an
unbiased training dataset containing more than 4167 proteins
and showed consistent improvement across all target values
and quality metrics. Unlike similar methods such as CCTOP,
TopProperty performance is independent of the type of input
protein and works for both TMHs and TMBs. Furthermore,
TopProperty provides consistently better SS and RSA
predictions for both globular and transmembrane proteins
and is a novel DNN method for predicting ME.
Other methods have been described for predicting directly

or indirectly the membrane exposure of TMP residues, such as
LIPS,19 RHYTHM,20 TMX,73 and more recently, TMP-
SSurface270 and LCP.74 From these predictors, LIPS and
RHYTHM provide information regarding exposure per α-helix
face, obscuring the per-residue signal, and lack information for
TMBs; TMX is not available anymore. LCP is described in a
preprint as a novel method that predicts the probability of
interacting with lipids in a membrane environment but is not
available for testing. Last, TMP-SSurface2 predicts the RSA for
residues placed in a membrane environment rather than a
direct exposure classification. Interestingly, the Pearson’s R in
the same range as for our independent OPM test set (Figure
2D) was reported.70

The recent release of AlphaFold75 has fundamentally
changed protein structure prediction as a field of research.
While some evidence suggests that AlphaFold performs well on
membrane proteins,76 the method still has limitations for
proteins that are particularly big or have an oligomeric
assembly. AlphaFold also does not provide information
regarding the placement of a protein within the membrane
bilayer. We expect that TopProperty predictions will be
particularly useful in conjunction with methods such as
AlphaFold to interpret and understand structure predictions
of transmembrane proteins. For such targets, TopProperty can
give insights into the orientation of the protein in the
membrane and provide restraints for model refinement, e.g.,
within Rosetta.77

The ability to predict multiple linear features with a single
tool makes TopProperty a useful first step to describe and
understand uncharacterized TMPs and globular proteins.
TopProperty is available as a standalone and web server at
https://cpclab.uni-duesseldorf.de/topsuite/, as are the datasets
and DNN models (http://dx.doi.org/10.25838/d5p-20). The
total runtime of a TopProperty job varies depending on the
size of the protein in question and the load of the server, but
generally, the user will receive a prediction within a few hours.
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