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To understand the function of proteins, knowledge of various properties is necessary. While
for many properties experimental determination protocols are available, these may be time-
consuming and laborious. An alternative is given by computational predictions, building on re-
cent advances in machine learning technology. Here, we present TopSuite, a collection of deep
learning-based predictors. TopSuite contains programs for protein model quality assessment,
template-based protein structure prediction, domain boundary prediction, secondary structure
and membrane topology prediction, and protein-protein interface contact prediction.

1 Introduction

To develop new pharmaceutical and biotechnological products, it is of utmost importance
to understand how proteins as targets or enzymes work. Various experimental procedures
are available to determine different properties of proteins, with their three-dimensional
structure being the most crucial property to gaining insight into protein function. While the
experimental determination of protein structure allows for atomic resolution information,
it is expensive, time-consuming, and comes without a guarantee of success in all cases'.
An alternative to experimental determination is computational protein structure prediction.
Having been a major scientific problem in computational biology for decades?, recent ad-
vances in deep learning technology led to the development of tools like AlphaFold® and
RoseTTAfold*, that show drastic improvements in the accuracy of predicted protein struc-
tures, providing structural models of even complex proteins that can match experimental
structures within experimental uncertainty.

Apart from pure structure prediction, a variety of additional properties are relevant for
understanding the biological context of proteins, e.g., predicting the borders of protein do-
mains or the interaction and orientation between proteins and membranes, i.e., membrane
topology. Similar to structure prediction, these tasks have benefited from deep learning
techniques>®.

A collection of deep learning-based metamethods to predict and evaluate protein struc-
tures and properties has been developed over the past seven years in our group, bundled
under the name TopSuite. TopSuite contains software for protein model quality assess-

47



ment (TopScore), template-based protein structure prediction (TopModel), domain bound-
ary prediction (TopDomain), secondary structure and membrane topology prediction (Top-
Property), and, under development, protein-protein interface contact prediction (TopInter-
face)’'°. To make the methods available to the public, web interfaces to all programs were
developed!! &,
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Figure 1. (A) The architecture of TopScore to assess protein model quality. 15 primary predictors are run on the
input model ensemble. MQAP stands for Model Quality Assessment Program. The output is processed and fed to
individual DNNs for each primary predictor, one set for global and one set for local scores. The prediction output
is then used as input for the final DNNs, which predict a global or residue-wise TopScore value. (B) Workflow of
TopModel for protein structure prediction. The user provides an input sequence to TopThreader (1). The resulting
threader alignments are used by TopBuilder to build models (2), which are subsequently scored with TopScore
(3). TopThreader then clusters and ranks the templates to remove false positives (4). TopAligner is used to build
ensembles of aligned templates and subsequently consensus alignments (5), which are fed to TopBuilder (6). The
models are again scored with TopScore (3). Subsequently, TopThreader takes these models along with primary
threader scores and creates a ranking for templates according to the predicted similarity to the native structure (4).
After the selection of the templates, TopAligner is used again to build an ensemble of multitemplate and pairwise
alignments (5), which TopBuilder builds models from (3). The resulting models are scored with TopScore (4).
Models from the multi-template ensemble (7) and single-template models (8) are chosen and used by TopRefiner
to create a final model by combination and refinement of good structural parts (9). Figures were taken from
Refs. 7 and 8.

All methods in TopSuite are metamethods and have a similar basic structure. In each
case, a varying number of primary predictors is run on the user input to produce the raw
data for the prediction. These predictions are normalised and set up as input features,
potentially combined with other features extracted directly from the input data. One or
multiple consecutive stages of deep neural networks (DNN) are then used to predict the
respective properties. This kind of architecture is illustrated in Fig. 1A with the DNNs
of TopScore as an example. Using multiple DNNs connected in series has the advantage

ghttps://cpclab.uni-duesseldorf.de/topsuite/
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that one can present features in different forms to separate stages, allowing the network to
learn specific patterns instead of overwhelming it by presenting all available information
at once. The final output of the last-stage neural network is processed and, in case our web
interfaces are used, is made available as a results webpage.

TopModel has a series of additional workflow modules, as it is not only predicting
or classifying properties but builds complete structural models. A scheme of the archi-
tecture of TopModel is shown in Fig. 1B. The workflow is split into five separate mod-
ules: TopThreader, TopAligner, TopBuilder, TopScore, and TopRefiner. TopThreader uses
twelve threading programs in combination with DNNs in a top-down consensus approach
to select optimal templates. TopAligner uses eight alignment programs to build an ensem-
ble of pairwise template-template alignments to ensure similar quality and fold of templates
for the model building. TopBuilder combines output from Modeller9'? and Rosetta'? to
build structural models based on alignments with template structures. TopScore is used at
various points in the workflow to score models. TopRefiner selects and combines different
models to replace regions with low TopScore values.

All programs of TopSuite are programmed with the Python programming language.
TopScore and TopModel use a multilayer perceptron (MLP) regression model from SciKit-
learn, while TopDomain, TopProperty, and TopInterface use Tensorflow and Keras in com-
bination with ResNet'*!7. For TopDomain, TopProperty, and Toplnterface, it is relevant
to encode the local protein neighbourhood to let the DNN capture the local context. There-
fore, a sliding window approach is used in which residues surrounding the target residue
are represented as the peripheral pixels in an image. This is realised by using convolutional
neural networks (CNN), which are well established in the field of image recognition.

3 Results

3.1 TopScore

TopScore predicts a derivative of the IDDT score'®, a superposition-independent target

score, called the “IDDT error”, which is defined as 1-IDDT. It provides a global score for
the model as a whole, as well as a local score for every residue of a model. To provide an
evaluation scheme that is free of clustering information, a second metric besides TopScore
is computed, TopScoreSingle. This is done because clustering-free methods are better in
selecting the best model, especially if the model ensemble is heterogeneous’. In compari-
son, AlphaFold provides an intrinsic model accuracy estimate called pLDDT?, calculated
directly from the final stage of the single representation. While it also uses an MLP to
calculate the score, its input features cannot be interpreted as obviously as the input values
to TopScore, making a direct comparison difficult.

TopScore was evaluated with different metrics to benchmark its performance in four
distinct tasks: The ability to separate good from wrong models, the accuracy of the pre-
dicted global IDDT error, the accuracy in ranking model ensembles, and how good it is
at finding the best model. Overall, TopScore and TopScoreSingle significantly outperform
all primary predictors in all categories. When calculating correlation scores with Pearson’s
Ran?, TopScore achieves a value of 0.93 for global and 0.78 for local error prediction.
Fig. 2E illustrates the connection between global TopScore and the true IDDT error on
a test system, indicating that the error prediction is more precise on very good and very
wrong models.
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Figure 2. A-D Evaluation of the predicted structure of lipoprotein LipoP from C. difficile with experimental
results from NMR. (A) Model predicted by TopModel. The model is coloured according to the agreement with
NMR results. Blue: Residues of S-strands that agree with the NMR data. Orange: Residues that were found
to be in S-strand conformation according to the NMR data but not in the TopModel prediction. Cyan: Residues
of a-helices that agree with the NMR data. Red: Residues that were found to be in «a-helical conformation
according to the NMR data but not in the TopModel prediction. Magenta lines: NOE restraints of S-sheets that
agree with the model. Red lines: NOE restraints of S-sheets that disagree with the model. (B) The TopModel
model is coloured according to residue-wise TopScore. (C) Model structure predicted by the program dPPAS2
from the LOMETS server. The colour scheme is the same as in panel (A). (D) The model from dPPAS2 is
coloured according to residue-wise TopScore. (E) Performance of TopScore. From the 3DRobot dataset29, three
random models from PDB entry 4BMB were selected and coloured according to TopScore (lower triangle) and
IDDT error (upper triangle). Figures were taken from Refs. 7 and 8.

3.2 TopModel

TopModel uses five submodules with numerous deep neural networks to build accurate
alignments that are used in homology modelling of protein structures. TopModel depends
on identifying high-quality templates; therefore, the module TopThreader uses a multi-
step DNN-assisted selection procedure to find optimal templates. AlphaFold, on the other
hand, can use template information, but such information plays only a minor role in its
performance®. By contrast, it mainly exploits information extracted from deep sequence
alignments. We view the two methods as complementary to each other, with TopModel
being a good option for providing high-confidence structural predictions if high-quality
templates are available and Alphalold being a valuable tool in the case no templates are
available.

To validate the predictive power of TopModel, nuclear magnetic resonance (NMR)
experiments were performed on the lipoprotein LipoP from C. difficile. The model
from TopModel and the model from the best primary predictor, the dPPSA2 program of
LOMETS!?, are compared with experimental results from NMR (Fig. 2A-D). The model
from TopModel shows good agreement with the experimental assignments from NMR,
with Matthews correlation coefficients (MCC) of 0.81 for 3-strands, 0.68 for a-helices,
and 0.66 for coils. The good model quality is also corroborated by a TopScore value of
0.35.

Additionally, the performance of TopModel and AlphaFold were compared in terms of
TopScore values computed for models generated by either method (Fig. 3). Alphalfold pre-
dicts models with a better TopScore than TopModel, in the case of good models, whereas
TopModel produces models with a better TopScore in the high-TopScore region.
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Figure 3. Comparison of TopModel and AlphaFold predictions scored by TopScore each. Lower TopScore values
indicate better structural models.

3.3 TopProperty

TopProperty uses eleven primary predictors of secondary structure (SS) and solvent ac-
cessibility (SA) and sixteen primary predictors of transmembrane topology (TMT) and
membrane exposure (ME) to produce features that are fed to two separate 1D CNNs with
four respectively five differently sized sliding windows to perform a meta-prediction on
these properties. While it is possible to use predicted structures from AlphaFold to deduce
the TMT or ME directly, TopProperty can predict these properties from sequence alone
and, therefore, is independent of structure availability.

TopProperty is benchmarked on the NOUMENON dataset?! for evaluating the perfor-
mance of SS and SA predictions and on the OPM dataset??, consisting of transmembrane
proteins, for evaluating the performance of SS and SA as well as TMT and ME predictions.
TopProperty shows overall superior performance for predicting SS and SA compared to the
respective primary predictors when the Q3 metric was used, both for the NOUMENON
and the OPM dataset. The Q3 score is the percentage of residues with a correctly predicted
3-state secondary structure®®. For TMT, TopProperty was benchmarked against methods
that specifically predict either transmembrane a-helical bundles (TMH) or transmembrane
(B-barrels (TMB). TopProperty significantly outperforms all other primary predictors on the
Q3 score. For ME, no competitor method provides any predictions for TMHs, therefore,
no comparison to another method was possible. For TMBs, only one competitor method
provides predictions but outperformed TopProperty on the MCC metric.

51



34 TopDomain

TopDomain applies 53 primary predictors of domain boundaries and feeds the output of
these combined with homology- and sequence-based features into two stages of 1D CNNs
with varying sliding window sizes. TopDomain contains workflows for sequence- (Top-
Domain, TopDomaing.q) as well as structure-based (TopDomainp,.) domain boundary
predictions. Additionally, a binary predictor (TopDomainryc) predicts if domain pars-
ing is necessary, e.g., to facilitate subsequent protein structure prediction. TopDomain is
benchmarked on two datasets, the manually annotated TopDomain dataset and the CASP
dataset based on annotations from the CASP organisers on CASP11-13 proteins. For both
datasets, TopDomain, TopDomaingey, and TopDomainp,. significantly outperform their
respective best primary predictor. TopDomain achieves an F1-score of 73.8 % for domain
boundary prediction within £10 residues for the TopDomain dataset and a value of 42.8 %
for the CASP dataset. Although, in general, tools such as Alphalold and RoseTTAfold
can predict structures for full-length sequences, often no fold can be predicted for parts of
the structure. In these cases, it can be fruitful to split the respective sequence into separate
domains and try to predict structures for the domains separately.

3.5 Toplnterface

Toplnterface uses four primary predictors of coevolutionary couplings together with struc-
tural, energetic, and sequence-based features as input to three stages of CNNs, leverag-
ing 2D sliding windows to represent the local neighbourhood context. In comparison to
AlphaFold, it uses additional ways of building paired multiple sequence alignments that
are necessary for the calculation of coevolutionary couplings of protein pairs. Especially,
ToplInterface has a dedicated workflow to build paired alignments for protein pairs com-
ing from two different species, allowing the modelling of inter-species protein-protein in-
teractions (PPI). Toplnterface provides a distance prediction together with an upper and

Figure 4. Toplnterface distance restraints. Toplnterface takes two protein structures as input, extracts various
structural, energetic, and sequence-based features, and performs three consecutive stages of deep learning to pre-
dict distance restraints with upper and lower bounds for every inter-protein residue-residue pair. These restraints
can be used in a docking protocol to create a structural model of the protein-protein complex. The distance
restraints are illustrated as grey lines between proteins of PDB ID SDWZ.
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lower bound for every inter-protein residue-residue pair, which can be used in a distance-
restrained docking, as presented in Fig. 4. It has workflows for homo- and heterodimers,
as well as domain-domain interactions and inter-species PPIs.

4 Conclusion

TopSuite, a collection of metamethods for predicting protein structures and properties,
was developed in our group. It consists of the programs TopScore, TopModel, TopDo-
main, TopProperty, and TopInterface. All programs utilise DNNs to perform their respec-
tive tasks, using carefully chosen sets of features and DNN architectures. As new protein
structure prediction tools such as AlphaFold and RoseTTAfold have been developed, the
accuracy of template-free structure predictions has reached new levels. While the TopSuite
programs cannot provide predictions with similar quality without the use of templates, we
view TopSuite as a complementary approach for properties that cannot be directly derived
from predicted models from AlphaFold or RoseTTAfold, e.g., domain boundary predic-
tions in the case of failing to build a multidomain protein directly from an end-to-end
approach. Therefore, we expect TopSuite to be a valuable tool in providing such property
predictions. In future developments, we seek to combine the power of sophisticated align-
ment pairing workflows in TopInterface with AlphaFold for building protein complexes of
higher stochiometry.
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