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To understand the function of proteins, knowledge of various properties is necessary. While

for many properties experimental determination protocols are available, these may be time-

consuming and laborious. An alternative is given by computational predictions, building on re-

cent advances in machine learning technology. Here, we present TopSuite, a collection of deep

learning-based predictors. TopSuite contains programs for protein model quality assessment,

template-based protein structure prediction, domain boundary prediction, secondary structure

and membrane topology prediction, and protein-protein interface contact prediction.

1 Introduction

To develop new pharmaceutical and biotechnological products, it is of utmost importance

to understand how proteins as targets or enzymes work. Various experimental procedures

are available to determine different properties of proteins, with their three-dimensional

structure being the most crucial property to gaining insight into protein function. While the

experimental determination of protein structure allows for atomic resolution information,

it is expensive, time-consuming, and comes without a guarantee of success in all cases1.

An alternative to experimental determination is computational protein structure prediction.

Having been a major scientific problem in computational biology for decades2, recent ad-

vances in deep learning technology led to the development of tools like AlphaFold3 and

RoseTTAfold4, that show drastic improvements in the accuracy of predicted protein struc-

tures, providing structural models of even complex proteins that can match experimental

structures within experimental uncertainty.

Apart from pure structure prediction, a variety of additional properties are relevant for

understanding the biological context of proteins, e.g., predicting the borders of protein do-

mains or the interaction and orientation between proteins and membranes, i.e., membrane

topology. Similar to structure prediction, these tasks have benefited from deep learning

techniques5, 6.

A collection of deep learning-based metamethods to predict and evaluate protein struc-

tures and properties has been developed over the past seven years in our group, bundled

under the name TopSuite. TopSuite contains software for protein model quality assess-
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that one can present features in different forms to separate stages, allowing the network to

learn specific patterns instead of overwhelming it by presenting all available information

at once. The final output of the last-stage neural network is processed and, in case our web

interfaces are used, is made available as a results webpage.

TopModel has a series of additional workflow modules, as it is not only predicting

or classifying properties but builds complete structural models. A scheme of the archi-

tecture of TopModel is shown in Fig. 1B. The workflow is split into five separate mod-

ules: TopThreader, TopAligner, TopBuilder, TopScore, and TopRefiner. TopThreader uses

twelve threading programs in combination with DNNs in a top-down consensus approach

to select optimal templates. TopAligner uses eight alignment programs to build an ensem-

ble of pairwise template-template alignments to ensure similar quality and fold of templates

for the model building. TopBuilder combines output from Modeller912 and Rosetta13 to

build structural models based on alignments with template structures. TopScore is used at

various points in the workflow to score models. TopRefiner selects and combines different

models to replace regions with low TopScore values.

All programs of TopSuite are programmed with the Python programming language.

TopScore and TopModel use a multilayer perceptron (MLP) regression model from SciKit-

learn, while TopDomain, TopProperty, and TopInterface use Tensorflow and Keras in com-

bination with ResNet14–17. For TopDomain, TopProperty, and TopInterface, it is relevant

to encode the local protein neighbourhood to let the DNN capture the local context. There-

fore, a sliding window approach is used in which residues surrounding the target residue

are represented as the peripheral pixels in an image. This is realised by using convolutional

neural networks (CNN), which are well established in the field of image recognition.

3 Results

3.1 TopScore

TopScore predicts a derivative of the lDDT score18, a superposition-independent target

score, called the “lDDT error”, which is defined as 1-lDDT. It provides a global score for

the model as a whole, as well as a local score for every residue of a model. To provide an

evaluation scheme that is free of clustering information, a second metric besides TopScore

is computed, TopScoreSingle. This is done because clustering-free methods are better in

selecting the best model, especially if the model ensemble is heterogeneous7. In compari-

son, AlphaFold provides an intrinsic model accuracy estimate called pLDDT3, calculated

directly from the final stage of the single representation. While it also uses an MLP to

calculate the score, its input features cannot be interpreted as obviously as the input values

to TopScore, making a direct comparison difficult.

TopScore was evaluated with different metrics to benchmark its performance in four

distinct tasks: The ability to separate good from wrong models, the accuracy of the pre-

dicted global lDDT error, the accuracy in ranking model ensembles, and how good it is

at finding the best model. Overall, TopScore and TopScoreSingle significantly outperform

all primary predictors in all categories. When calculating correlation scores with Pearson’s

RAll
2, TopScore achieves a value of 0.93 for global and 0.78 for local error prediction.

Fig. 2E illustrates the connection between global TopScore and the true lDDT error on

a test system, indicating that the error prediction is more precise on very good and very

wrong models.
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Figure 3. Comparison of TopModel and AlphaFold predictions scored by TopScore each. Lower TopScore values

indicate better structural models.

3.3 TopProperty

TopProperty uses eleven primary predictors of secondary structure (SS) and solvent ac-

cessibility (SA) and sixteen primary predictors of transmembrane topology (TMT) and

membrane exposure (ME) to produce features that are fed to two separate 1D CNNs with

four respectively five differently sized sliding windows to perform a meta-prediction on

these properties. While it is possible to use predicted structures from AlphaFold to deduce

the TMT or ME directly, TopProperty can predict these properties from sequence alone

and, therefore, is independent of structure availability.

TopProperty is benchmarked on the NOUMENON dataset21 for evaluating the perfor-

mance of SS and SA predictions and on the OPM dataset22, consisting of transmembrane

proteins, for evaluating the performance of SS and SA as well as TMT and ME predictions.

TopProperty shows overall superior performance for predicting SS and SA compared to the

respective primary predictors when the Q3 metric was used, both for the NOUMENON

and the OPM dataset. The Q3 score is the percentage of residues with a correctly predicted

3-state secondary structure23. For TMT, TopProperty was benchmarked against methods

that specifically predict either transmembrane α-helical bundles (TMH) or transmembrane

β-barrels (TMB). TopProperty significantly outperforms all other primary predictors on the

Q3 score. For ME, no competitor method provides any predictions for TMHs, therefore,

no comparison to another method was possible. For TMBs, only one competitor method

provides predictions but outperformed TopProperty on the MCC metric.
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lower bound for every inter-protein residue-residue pair, which can be used in a distance-

restrained docking, as presented in Fig. 4. It has workflows for homo- and heterodimers,

as well as domain-domain interactions and inter-species PPIs.

4 Conclusion

TopSuite, a collection of metamethods for predicting protein structures and properties,

was developed in our group. It consists of the programs TopScore, TopModel, TopDo-

main, TopProperty, and TopInterface. All programs utilise DNNs to perform their respec-

tive tasks, using carefully chosen sets of features and DNN architectures. As new protein

structure prediction tools such as AlphaFold and RoseTTAfold have been developed, the

accuracy of template-free structure predictions has reached new levels. While the TopSuite

programs cannot provide predictions with similar quality without the use of templates, we

view TopSuite as a complementary approach for properties that cannot be directly derived

from predicted models from AlphaFold or RoseTTAfold, e.g., domain boundary predic-

tions in the case of failing to build a multidomain protein directly from an end-to-end

approach. Therefore, we expect TopSuite to be a valuable tool in providing such property

predictions. In future developments, we seek to combine the power of sophisticated align-

ment pairing workflows in TopInterface with AlphaFold for building protein complexes of

higher stochiometry.
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