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ABSTRACT: AmberTools is a free and open-source collection of programs used to set up, run, and
analyze molecular simulations. The newer features contained within AmberTools23 are briefly
described in this Application note.

■ INTRODUCTION
The present status of the Amber (Assisted Model Building and
Energy Refinement) suite of programs has been the product of
decades of effort from a broad range of research groups,
starting with the group of the late Peter Kollman in the early
1980s.1 Amber contains tools for energy minimization (EM),
molecular dynamics (MD) simulations, free energy (FE)
calculations, potential of mean force (PMF) capabilities, and
all the needed tools to set up the modeling effort. The software
stack has been reviewed in the past,2−4 and the manual
contains detailed descriptions of all the algorithms in Amber as
well as a full list of contributors to Amber over the years (see
https://ambermd.org). Besides the actual code, Amber is used
to describe a series of highly regarded force fields5 for
proteins,6−12 carbohydrates,13,14 nucleic acids,7,8,15 and lip-
ids.16 The present Application Note will only describe the
latest additions to the open-source AmberTools23 and as such
is not meant to give a thorough exposition of all the methods
and capabilities of AmberTools and Amber.
Overview of Amber and AmberTools. Amber and

AmberTools form a collection of programs that are designed to
work together to facilitate system setup, MD simulations, and
trajectory analysis for biomolecules. It is useful to note that the
Amber force fields mentioned above can be used in a variety of
molecular dynamics codes outside of AmberTools and Amber.
The Amber code is updated in even-numbered years, and it

uniquely includes the base MD code known as pmemd, which
offers parallel and graphics processing unit (GPU)-accelerated
versions of the MD codes along with some free-energy-based
methods not implemented in AmberTools. Analogous MD
function is available in sander in AmberTools. AmberTools is
distributed under an open-source license, primarily the GNU
General Public License, with some portions covered by other
compatible open-source licenses. The Amber force fields are in
the public domain and are distributed with AmberTools. The
pmemd code is distributed as source code but has a separate
license that contains restrictions on use and redistribution;
there is no license fee for noncommerical use of pmemd. Full
details on licensing and distribution can be found at https://
ambermd.org.
Typical Workflow. The basic workflow for AmberTools is

shown in the accompanying (see Figure 1), and it describes
preparation, simulation, and analysis steps. Preparation starts
at the top, since all MD simulations require some sort of
starting three-dimensional (3D) structure, which for bio-

Received: July 28, 2023
Published: October 8, 2023

Application Notepubs.acs.org/jcim

© 2023 The Authors. Published by
American Chemical Society

6183
https://doi.org/10.1021/acs.jcim.3c01153
J. Chem. Inf. Model. 2023, 63, 6183−6191

This article is licensed under CC-BY-NC-ND 4.0

D
ow

nl
oa

de
d 

vi
a 

93
.2

00
.1

88
.1

49
 o

n 
O

ct
ob

er
 2

3,
 2

02
3 

at
 1

9:
21

:5
3 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+A.+Case"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hasan+Metin+Aktulga"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kellon+Belfon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+S.+Cerutti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="G.+Andre%CC%81s+Cisneros"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vini%CC%81cius+Wilian+D.+Cruzeiro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vini%CC%81cius+Wilian+D.+Cruzeiro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Negin+Forouzesh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+J.+Giese"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andreas+W.+Go%CC%88tz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Holger+Gohlke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saeed+Izadi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saeed+Izadi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Koushik+Kasavajhala"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mehmet+C.+Kaymak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Edward+King"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tom+Kurtzman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tai-Sung+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pengfei+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pengfei+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jian+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tyler+Luchko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ray+Luo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Madushanka+Manathunga"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matias+R.+Machado"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hai+Minh+Nguyen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hai+Minh+Nguyen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kurt+A.+O%E2%80%99Hearn"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexey+V.+Onufriev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Feng+Pan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sergio+Pantano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ruxi+Qi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ali+Rahnamoun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ali+Rahnamoun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ali+Risheh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stephan+Schott-Verdugo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Akhil+Shajan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jason+Swails"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Junmei+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haixin+Wei"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haixin+Wei"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiongwu+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yongxian+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shi+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shiji+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qiang+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+E.+Cheatham+III"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+R.+Roe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+R.+Roe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adrian+Roitberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carlos+Simmerling"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Darrin+M.+York"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+C.+Nagan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kenneth+M.+Merz+Jr."&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kenneth+M.+Merz+Jr."&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.3c01153&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01153?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01153?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01153?goto=recommendations&?ref=pdf
https://ambermd.org
https://ambermd.org
https://ambermd.org
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01153?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/63/20?ref=pdf
https://pubs.acs.org/toc/jcisd8/63/20?ref=pdf
https://pubs.acs.org/toc/jcisd8/63/20?ref=pdf
https://pubs.acs.org/toc/jcisd8/63/20?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


molecules is usually in the form of a PDB-format file;
AmberTools has some model-building capabilities (e.g.,
PACKMOL-Memgen, see below), but other codes are generally
used if experimental structures are not available. The
prepareforleap step, which is recent and still under develop-
ment, carries out tasks to map components in the input file to
Amber nomenclature (especially useful for carbohydrates), add
hydrogens, identify cross-links, assign histidine protonation
states, and similar tasks. Next is the LEaP program, which is a
workhorse program that connects the nascent structure to
Amber’s built-in force fields for proteins, nucleic acids,
carbohydrates, lipids, and common solvents and to bespoke
force fields for other components like ligands and cofactors
that can be created by programs like antechamber and mdgx
(for general organic molecules) and pyMSMT (for metal ions).
The LEaP code creates two files: an “inpcrd” file that has
complete three-dimensional coordinates and a “prmtop” file
that contains all other information needed for force field-based
analyses of the system. The latter file can be examined and
edited via parmed, which can also export similar files in the
GROMACS or CHARMM format.
The simulation phase is primarily the province of sander or

pmemd. The “mdin” file contains a large number of parameters

that control the type and length of the simulation to be carried
out, the integration method, the use of a QM/MM (quantum
mechanics/molecular mechanics) model, specification of
enhanced-sampling and thermodynamic integration methods,
and the like. Restraints on the system, often from NMR or X-
ray data but more recently from cryogenic electron microscopy
(cryoEM) and other sorts of integrative modeling, can also be
input at this point.
Snapshots of conformations are generally stored at regular

intervals during a simulation and then serve as input for an
analysis phase. The cpptraj program is the workhorse code
here, providing geometric and energetic analyses, clustering
algorithms, and many other routines. Three other codes,
MMPBSA.py, FE_Toolkit, and FEW (Free Energy Workflow)17

are devoted to estimating free energy changes. More complete
descriptions of all of this, including a full list of programs,
encompassing nearly 1000 pages of text, are in the Amber23
Reference Manual.
AmberTools23 Updates. We have a number of significant

new features for AmberTools23 which include automated
building of membrane-protein−lipid-bilayer systems, enhance-
ments to the polarizable Gaussian multipole method,
extensions to the Poisson-Boltzmann surface area (PBSA)
method, enhanced free energy capabilities, enhanced QM and
QM/MM capabilities, and a significant upgrade of the Amber
Web site and tutorials. Each of these additions is summarized
below.
1. Polarizable Gaussian Multipole Model in the SANDER

Program. The polarizable Gaussian Multipole (pGM) model
is a next-generation induced-dipole polarizable model aiming
to balance accuracy and efficiency for molecular simulations of
biomolecular systems.18−22 We recently developed a new
framework for efficient computation of analytical atomic
gradient for the pGM model.18 The pGM virial for constant
pressure molecular dynamics simulations was also imple-
mented in previous releases of Amber.19 The accuracy and
robustness of the pGM model have also been validated on
various molecular properties.20−22 In the AmberTools23
release, we further optimized the induced-dipole iteration
algorithm. Specifically, we introduced maximum relative error
as the convergence criterion to ensure energy conservation in
molecular dynamics simulations. We also designed and
implemented multiorder extrapolation (MOE) and local
preconditioning conjugate gradient (LPCG) schemes to
accelerate the induced-dipole iteration.23 Given the new
developments, MD simulations with the pGM model are
able to achieve a similar level of energy conservation as those
with the point charge additive models, within 2−3 induction
iterations.
2. New Features in the PBSA Program. MM/PB(GB)SA24

is an end-point method for calculating the free energies of
molecules in implicit solvent, i.e., Poisson−Boltzmann (PB)
and generalized Born (GB). Solvation interactions, especially
solvent-mediated dielectric screening and Debye−Hückel
screening, are essential determinants of the structure and
function of biomolecules. Several efficient finite-difference
numerical solvers, both linear25−27 and nonlinear,28 are
implemented in pbsa for various applications of the
Poisson−Boltzmann method. The GPU support of those
solvers is also implemented in pbsa.cuda.29−31 In the 2023
release, improvements to the pbsa program include the
integration of the Machine-Learned Solvent Excluded Surface
(MLSES) model,32 which provides a highly efficient and

Figure 1. Common workflow in AmberTools. Flow went from top to
bottom. Black boxes are for preparation, gray indicates an optional
preparation step specific for membrane systems, blue for simulation,
and red for analysis.
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differentiable molecular surface for continuum solvation
modeling of biomolecules. Various options for the MLSES
model have been implemented, allowing users to optimize
performance on both central processing unit (CPU) and GPU
platforms using Fortran, the CUDA kernel, and LibTorch. This
flexibility enables users to choose the best-suited hardware and
software environments for their needs. Additionally, an
MBAR/PBSA strategy has been developed combining the
PBSA continuum solvent model with the Multistate Bennet
Acceptance Ratio (MBAR) approach. This coupling allows for
more accurate modeling of electronic polarization, leading to
improved accuracy in absolute binding free energy simulations
of highly charged ligands.33

To date, the GB model in AmberTools could be specified
with the following “igb” values: 1,34 2,35 5,36 7, and 8.37 In
2017, an accurate yet efficient grid-based surface GB model
was introduced38 which is currently available in AmberTools as
a stand-alone application named GBNSR6 ($AMBERHOME/
bin/gbnsr6).39 GBNSR6 calculates the solvation free energy of
an input structure on a single snapshot. In AmberTools23,
GBNSR6 has been integrated into MMPBSA.py40 such that it
runs over multiple snapshots extracted from the trajectories of
protein, ligand, and complex structures. To run this model,
“igb = 66” is now available in MMPBSA.py. All input
parameters of the stand-alone GBNSR6 program can be
modified through the MMPBSA.py input file.
3. PyRESP and PyRESP_GEN. Accurate modeling of

electrostatic and polarization effects is crucial in molecular
simulations. Many polarizable force fields have been developed
to account for these important effects. Among these models,
the polarizable Gaussian Multipole (pGM) model has emerged
as a self-consistent approach in handling both short-range and
long-range interactions.18−23 We have recently developed the
PyRESP program41 for electrostatic parametrizations for point
charge additive models and induced-dipole models, including
the pGM model. By performing least-squares fittings to
electrostatic potentials surrounding molecules, the PyRESP
program extends functionalities of the ancestor RESP program
that only perform parametrizations for point charge additive
models.42 However, the process of generating input files for
PyRESP is tedious and error-prone. In the AmberTools23
release, we implemented a flexible and user-friendly program,
PyRESP_GEN,82 to minimize the user’s efforts to set up a
PyRESP run. In addition, we also optimized the restraint
weights for the pGM models with and without permanent
dipoles. For the pGM-perm model, the optimal strategy for
electrostatic potential fitting is also proposed.
4. 3D-RISM. The 3D reference interaction site model (3D-

RISM) of molecular solvation43 is an implicit solvent model
that calculates equilibrium density distributions and thermody-
namics of explicit solvent models. The implementation in
AmberTools permits MD, energy minimization, and trajectory
analysis through sander, while rism3d.snglpnt provides stand-
alone trajectory analysis.44 Recently, periodic boundaries were
introduced, allowing application to crystal structure refinement
and other periodic systems.45 In addition, computational
scaling for open boundaries was improved via treecode
summation for electrostatic interactions, providing a 2−4
times speedup for typical proteins and enabling application to
large biomolecular complexes with more than 1 million
atoms.46

5. LibTorch Interface to Amber. We introduced a LibTorch
interface to the 2023 release of AmberTools, which is a

cutting-edge C++ runtime library developed by the PyTorch
team.47 This library enables flexible tensor computations and
dynamic deep neural network modeling. Amber now provides
two options for enabling the LibTorch library: a built-in mode
and a user-installed mode. With the LibTorch integration, the
pbsa program supports both CPU and GPU environments,
making it highly versatile. Additionally, user instructions and
tutorials have been provided for configuring the LibTorch
library, making it more accessible to researchers and developers
working in Amber and AmberTools.
6. Free Energy. Free energy methods have been a mainstay

of Amber for decades.48,49 Besides our existing free energy
technology base this latest release of AmberTools includes a
collection of new software tools for the robust analysis of free
energy simulations (FE-ToolKit)50,51 as well as workflow tools
for production free energy simulation setup and analysis
(ProFESSA)52 using the GPU-accelerated Amber free energy
engine with enhanced sampling features. This software is part
of the Amber Drug Discovery Boost package.53

6.1. FE-ToolKit. The FE-ToolKit contains two main utilities:
edgembar51 for analysis of alchemical free energy simulations
(e.g., such as those used for prediction of ligand-protein
absolute and relative binding free energies in drug discovery54)
and ndfes50 for analysis of multidimensional free energy profiles
(e.g., such as those used for prediction of minimum free energy
pathways in studies of enzyme mechanisms55,56).
6.2. Edgembar. The edgembar program performs analysis of

alchemical free energy simulations using the multistate Bennett
acceptance ratio (MBAR) method,57 the Bennett acceptance
ratio (BAR) method,58 exponential averaging,59 thermody-
namic integration,60 or combinations of these approaches.
Alchemical free energy simulations often calculate a network of
relative free energy differences between two environments. For
example, ligand binding applications in drug discovery use a
network of alchemical transformations between ligands, termed
a “thermodynamic graph”, where each ligand represents a
“node” in the graph and each “edge” represents an alchemical
transformation between ligands bound to their target relative
to that in aqueous solution. Given the alchemical simulation
outputs from the independent trials in both environments,
edgembar will perform a “network-wide” free energy analysis,51

including the imposition of cycle closure and, optionally,
experimental constraints. The analysis produces a comprehen-
sive report of the results, including uncertainties and warnings.
The report identifies potential problems with simulations that
may require further attention. The issues include: a lack of
convergence, the analysis of too few statistically independent
samples, poor phase space overlap between adjacent alchemical
states,61 and poor reweighting entropy.62

6.3. Ndfes. The ndfes program evaluates multidimensional
free energy surfaces from umbrella sampling.50 The analysis
can be performed with the variational free energy profile
(vFEP) method,63,64 MBAR,57 the weighted thermodynamic
perturbation method (wTP),65 and the generalized weighted
thermodynamic perturbation method (gwTP).66 The wTP and
gwTP methods estimate the free energy surface of an expensive
target-level of theory from the sampling performed with
inexpensive reference potentials.66 The estimation of ab initio
QM/MM free energy surfaces in condensed-phase environ-
ments has become more practical in the latest version of
AmberTools with the combined introduction of the GPU-
accelerated QUICK software67 and ndfes analysis program.
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6.4. ProFESSA. The ProFESSA workflow52 uses the GPU-
accelerated AMBER free energy engine. The workflow
establishes a flexible, end-to-end pipeline for performing
alchemical free energy simulations that brings to bear
technologies including new smoothstep softcore potentials
and optimized alchemical transformation pathways,68 the
alchemical enhanced sampling (ACES) method,69 and a
network-wide free energy analysis51 with optional imposition
of cycle closure and experimental constraints implemented in
FE-ToolKit.
7. Quantum Mechanical/Molecular Mechanical Methods.

Amber has had a long tradition of QM/MM methods and
implementations,70 with the most recent additions being the
QUICK/sander QM/MM implementation in Amber-
Tools23.67,71−73 QUICK/sander has been extensively updated,
and its performance has been significantly improved. QUICK,
as distributed with AmberTools23, can also be used as a
standalone QM program for single point calculations or
geometry optimizations.
7.1. Performance Improvements/AMD Implementation.

With the second-generation electron repulsion integral code
and other performance enhancements recently introduced into
QUICK,67,71−73 higher ps/day can be obtained in QM/MM
simulations.73 For instance, with respect to AmberTools21,74

up to 2× speedups have been observed for benchmark
simulations with different QM regions of photoactive yellow
protein on NVIDIA V100 GPU.73 Furthermore, support for
AMD GPUs has been enabled. Users can now make use of
AMD data center cards such as MI50, MI100, MI200, and
MI250 for simulations. According to benchmark studies, the
performance on the MI100 is similar to that of NVIDIA
V100.73 The implementation runs properly on MI200 and
MI250 cards; however, the performance is not yet optimized
for these cards. The recommended AMD GPU for the current
version is MI100. An optimized version for MI2XX will be
available to users in the next AmberTools release.
7.2. Long-Range Electrostatics. For the treatment of long-

range electrostatics in QM/MM, the ambient-potential
composite Ewald method (CEw) developed by Giese and
York75 has been integrated. The performance penalty for

turning on CEw in the GPU version is <25% for Hartree−Fock
(HF) and <10% for density functional theory (DFT) in
comparison to standard QM/MM with 8 Å electrostatic cutoff.
This allows users to carry out more accurate simulations at a
slightly higher computational cost.
7.3. Dispersion. Among other minor features introduced

into QUICK, dispersion corrections in DFT and data exporting
capability into Molden format are notable. Grimme’s
dispersion corrections (D2, D3 with different damping)76

can be used in QM/MM with appropriate functionals. Users
can also export Cartesian coordinates, molecular orbitals, etc.
of the QM region into Molden format for visualization
purposes.
8. Automated Building of Membrane-Protein−Lipid-

Bilayer Systems. PACKMOL-Memgen is a simple-to-use
command line implementation of a generalized workflow for
the automated building of membrane-protein−lipid-bilayer
systems based on open-source tools including Packmol,
memembed, pdbremix, and AmberTools.77 It allows for setting
up multiple configurations of a system in a user-friendly and
efficient manner, which can serve as starting configurations in
MD simulations under periodic boundary conditions. Since its
introduction, support was added for additional lipid head-
groups and to include solutes in the water or membrane phase
and generate curved membrane surfaces or double bilayer
systems. Additionally, SIRAH78 coarse-graining routines can be
used, and non-membrane systems (water or mixed-solvent
simulations) can now be set up.79 In the AmberTools23
release, PACKMOL-Memgen now handles all Amber-supported
ions and the OPC3 water model as well as allows generating
HMR systems, providing control for pmemd.cuda, and using
pdb2pqr for protonating the protein.
9. mdgx. The mdgx program, which began as a de novo

reimplementation of the basic features needed for molecular
dynamics and stayed in service for its uncommon capability of
storing multiple topologies and coordinate sets in the space of
a single runtime instance, has gained two noteworthy features.
First, it can postprocess Amber topology files to add pmemd-
compatible representations of the GROMACS virtual sites.80

While mdgx itself can perform limited MD simulations with

Figure 2. Overview of the Amber Tutorials. Tutorials are modular, cover the basic steps of a typical molecular dynamics simulation, introductory
case studies, advanced methods, and some tools that are commonly employed by Amber users.
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such models, the performant pmemd GPU implementation can
now incorporate massless sites into its free energy methods.
Virtual sites require parameters to be useful, but the mdgx
program itself has tools for fitting their charges as well as
bonded parameters in the context of these extra monopoles.
Virtual site force fields are a logical extension of popular fixed-
charge models, entailing incremental updates to the dynamics
engine and incremental increases in the cost of the simulations.
Second, through its ability to calculate multiple systems at
once, mdgx has an exploratory feature for running simple
implicit solvent dynamics on many replicas of different
topologies on one GPU. By running independent trajectories
on each GPU multiprocessor, mdgx scales simulations of small
peptides and drug molecules to modern GPUs with tens of
times the throughput of other GPU MD implementations
when tasked with small systems. This capability has been
applied to docked pose refinement.81

10. The Amber Web Site and Tutorials. The Amber Web
site (https://ambermd.org) supports the user community with
new release information, manuals, tutorials, and information
on force fields. Users are directed to the most recent manual
version to learn about technical usage and appropriate
literature references to communicate best practices in the
field. The Amber tutorials have also been reorganized and span
topics ranging from initial system setup to advanced methods
(Figure 2). A tutorial overview page guides new users through
the process of building, running, and analyzing a system and
points them to key initial case studies. The recent tutorials
overall are more modular, and learning objectives are given.
New tutorial development has focused on building different
system types and tutorials for creating stable systems through
relaxation of system positions for both explicit and implicit
solvent as well as a tutorial covering advanced thermodynamic
integration methods such as using smoothstep softcore
potentials,68 enhanced sampling for softcore ligand energies,
and methods such as ACES.69

Modeling software is not useful without compatible force
fields. Included in the release of AmberTools are the force
fields developed by the Amber community. The main force
fields page contains a list of recommended force fields, and
each type of molecule/ion has a separate page outlining
nuances in choosing an appropriate force field.

■ CONCLUSIONS
The most significant additions to AmberTools23 are briefly
summarized. AmberTools is freely available at https://
ambermd.org. Full details on licensing, distribution, and
hardware supported can be found at https://ambermd.org.

■ ASSOCIATED CONTENT
Data Availability Statement
The AmberTools suite is free of charge, and its components
are mostly released under the GNU General Public License
(GPL). Please see https://ambermd.org for licensing and
distribution.
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