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ABSTRACT: We introduce PyPE_RESP, a tool to facilitate and
standardize partial atomic charge derivation using the Restrained
Electrostatic Potential (RESP) approach. PyPE_RESP builds upon
the open-source Python package RDKit for chemoinformatics and
the AMBER suite for molecular simulations. PyPE_RESP provides
an easy setup of multiconformer and multimolecule RESP fitting
while allowing a comprehensive definition of charge constraint
groups through multiple methods. As a command line tool,
PyPE_RESP can be integrated into batch processes. The software
enables the derivation of partial atomic charges for additive and
polarizable force fields. It outputs constraint group and non-
constraint group charges to give an immediate overview of the fit
result. PyPE_RESP will be distributed with AmberTools and compatible with most computing platforms.

■ INTRODUCTION
The accurate representation of electrostatic interactions is
essential for developing, extending, and applying empirical
force fields used in molecular dynamics simulations.1

Considering the prominent use of widespread additive force
fields such as from the AMBER family2−4 or CHARMM
family,5,6 and the ongoing development of polarizable force
fields including the atomic multipole-optimized energetics for
biomolecular applications (AMOEBA),7,8 polarizable Gaussian
Multipole (pGM),9−11 and OPLS512 force fields, this state-
ment holds regardless of the type of force field being
developed. Although various methods for deriving partial
atomic charges have been described,13 the restrained electro-
static potential (RESP) approach is still the main charge
derivation method used in modern AMBER force fields.14,15

This can be attributed to its capability to reproduce the
quantum mechanical molecular electrostatic potential (ESP)
while producing chemically sensible charge distributions.16

Though RESP was initially developed to obtain fixed atom-
centered partial charges for additive force fields, it has been
further evolved into the RESP-ind and RESP-perm models
implemented in PyRESP17 with induced and permanent dipole
moments for polarizable force fields. A major drawback of the
RESP method lies in its setup requirements, as multiple
preparation steps must be carried out before atomic charges
are obtained for the system of interest. These steps include:

(i) Extraction of electrostatic potential (ESP) information
from Gaussian18 output files (via espgen19)

(ii) Generation of input files for PyRESP (via PyRESP_-
GEN20)

(iii) Insertion of charge constraint and atom equivalency
information into PyRESP input files.

While tasks (i) and (ii) can be automated by dedicated
software, task (iii) requires either manual editing of input files
or creating custom scripts to adhere to the RESP input file
format. It additionally requires the manual definition of charge
constraint groups (CCGs), meaning a group of atoms whose
charge is fixed during fitting by referencing the respective atom
indices. The latter can be tedious and error-prone when
PyRESP needs to be invoked for multiple molecules. Further
complications arise when multiple conformers of a given
molecule are considered. Currently, PyRESP_GEN is capable
of producing only PyRESP input files for one structure at a
time, which therefore involves additional file management by
the user to obtain a concatenated PyRESP input file. This also
applies to the ESP information, which must be concatenated
into a single file. Finally, the obtained RESP charges must be
manually input into a structure file (e.g., mol2 format), as
charges will only be written to a parameter file created by
PyRESP. These concerns have already been tackled to some
extent by the development of the RESP plugin for the Psi4
quantum chemistry package21,22 or the RESP ESP charge
derive (R.E.D.) server.23 Although the R.E.D. server covers
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tasks (i) and (ii) well and offers various functionalities, such as
integrated geometry optimization and ESP calculation using
Gaussian, its syntax for defining CCGs can be overwhelming if
many structures need to be parametrized. This is also reflected
in the server’s naming convention for output files, which can
impede the identification of a desired molecular fragment.
Additionally, the use of an external server always carries a risk
of experiencing periods of downtime and requires the
uploading of research data. Furthermore, antechamber,19 a
tool within the AMBER molecular dynamics suite, is capable of
rapidly deriving RESP charges but is limited to single
conformer fitting. Therefore, the conformational bias of
RESP charges is neglected in this approach.24

To overcome these issues, we developed PyPE_RESP, a
Python-based piPEline to conveniently and systematically
execute multiconformer and multimolecule RESP fitting within
the realm of AMBER, using Gaussian for ESP computation.
PyPE_RESP will be distributed under a GPL license together
with AmberTools19 (https://ambermd.org/AmberTools.php).

■ WORKFLOW DESCRIPTION
The PyPE_RESP workflow minimizes the user’s manual work
while providing flexible setups and reliable and reproducible
results of charge fitting. A flowchart of the main steps of
PyPE_RESP is presented in Figure 1. PyPE_RESP builds upon
existing tools (antechamber,19 espgen, PyRESP_GEN,20 and
PyRESP17) and manages their in- and outputs, enabling it to
be adaptable toward specific properties of each system to be
parametrized and forming an “all-in-one” solution for RESP

charge derivation. The only input files required are the
Gaussian output files containing the ESP information for each
conformer of each molecule. These files were gathered in a
dedicated directory. All other specifications for the RESP run
are managed by flags submitted via the PyPE_RESP command
line interface (CLI) or a PyPE_RESP input file. The latter is
convenient for the repetitive processing of multiple molecules.
Most flags in the CLI utilize PyPE_RESP’s inherent
enumeration of CCGs, which is illustrated in Figure 2.
Definition of Charge Constraint Groups. During the

electrostatic parametrization of fragments derived from large
molecules, they are often equipped with a capping group that
mimics the chemical environment in the assembled molecule.
Since these capping groups are only attached temporarily,
charge constraints are applied to account for their removal
after partial atomic charges have been derived. PyPE_RESP
indexes each CCG (starting from 1) in the order they are
defined under the --constraint flag. No additional
specification is needed if a fit without charge constraints is
desired, since PyPE_RESP will automatically carry out
unconstrained RESP fitting if no CCGs were specified.

PyPE_RESP accepts two ways for defining CCGs under the
--constraint flag. First, groups of atom indices were
supplied to be constrained. The atom indices can be taken
directly from the Gaussian output files that PyPE_RESP uses
as inputs. Still, a visual inspection of the molecule’s three-
dimensional structure is most likely required to determine all
indices of atoms of a group constraint. While visualization
software exists that can read Gaussian output files, common

Figure 1. Flowchart highlighting the most important steps in the PyPE_RESP workflow. After each Gaussian output file is located, mol2 and ESP
files are created simultaneously (I). Then, the number of conformers per unique molecule is identified by comparing the International Chemical
Identifier (InChI) of each molecule (II). First-stage and second-stage PyRESP input files are created by executing PyRESP_GEN and subsequently
concatenated to yield two PyRESP input files (III). Depending on the charge constraint level chosen, CCGs are defined based on the information
supplied on the command line and appended to the PyRESP input files. The atom equivalency information (i.e., declaring that atoms of all
conformers are treated equally) is also appended to the PyRESP input files (IV). Next, PyRESP is executed to start the fitting process (V). The
resulting partial atomic charges are written to a newly generated mol3 file for each molecule together with the molecule’s connectivity points,
meaning atoms connected to, but not part of, a constraint group determined by PyPE_RESP. The derived charges are analyzed based on the mol3
files by utilizing the atom indices of each constraint group to match the corresponding atom charges (VI). Additionally, the sum of charges for each
constraint group and the sum of charges of each atom not belonging to the constraint group are calculated. This information is written in a log file
and a csv file.
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molecule visualization software, such as VMD25 or PyMOL,26

cannot do this without further modification. To overcome this,
PyPE_RESP allows carrying out a conversion run if the
--mol2_only flag is supplied. In this case, PyPE_RESP will
generate mol2 files for each Gaussian output file found using
the antechamber and exit afterward. Second, defining CCGs is
based on matching substructures of molecules generated from
SMARTS patterns by utilizing the RDKit Open-source
cheminformatics package (Figure 2).27 Both ways follow the
same syntax where the molecule to assign the CCG is specified,
followed by a colon and the SMARTS pattern to be used for
substructure matching, or the space-separated atom indices. In
both cases, the CCG must be enclosed in quotation marks to
be read as a single argument. Molecules are indexed starting
from 1 and can be referenced by their index to define CCGs.
Indexing is either determined automatically based on the
ascending alphabetical order of filenames or by specifying
wildcard patterns matching the respective filenames, which will
be resolved using Python’s glob module. PyPE_RESP accepts
only unambiguous SMARTS patterns and raises an error if
multiple substructure matches are found for a given pattern.

The use of SMARTS patterns often requires less initial setup
than defining CCGs by atom indices but can create long and
complex character sequences to match a specific functional
group. To verify whether a pattern matches one or multiple
substructures, the --test_smarts flag can be utilized.
Then a test run is carried out, in which CCGs defined under
the --constraint flag via SMARTS patterns are matched
against the respective target molecule and the number of
substructure matches, along with the atom indices correspond-
ing to each match per CCG, is returned. Any CCG defined via
atom indices will be ignored in this case. If a SMARTS pattern
is found to be ambiguous, a warning is displayed. Additionally,
an incorrectly specified SMARTS string would force the
program to exit.

SMARTS patterns often include atoms that are required to
ensure unambiguity but are not meant to be part of the final
CCG. To neglect these atoms later during fitting, “SMARTS
slicing” can be applied by enclosing the parts of the SMARTS

pattern that are neglected in pipe symbols (Figure 2).
PyPE_RESP recognizes these symbols and removes the atom
indices corresponding to the enclosed section after the full
pattern has been used for substructure matching.
Setting Fit Properties. Besides defining single CCGs, one

needs to consider how intermolecular charge constraints are
defined. This is also accomplished using the --con-
straint flag (Figure 2). The flag can be used multiple
times and accepts up to two arguments corresponding to two
CCGs. If a single CCG is defined, it is treated as an
intramolecular CCG, whereas two CCGs from different
molecules are treated as intermolecular CCGs.

The assignments of the constraint group and molecular
charges are another crucial step in RESP charge derivation.
While molecular charges do not need to be defined as they are
taken from the respective Gaussian input file, constraint group
charges are set to zero by default but can be assigned by
specifying the group charge during the definition of the
respective constraint group (see Examples section).

Besides the traditional RESP method, PyPE_RESP also
allows using the RESP-ind and RESP-perm models that are
integrated into the PyRESP software. The associated flags
(--ptype and --polariz) are identical to those used in
PyRESP and PyRESP_GEN. These flags do not need to be
specified if the usual point-charge model (“chg”) is chosen.

PyRESP execution can be prohibited by supplying the
--no_pyresp flag, which stops PyPE_RESP after the
generation of PyRESP input files to allow for analysis by the
user. PyPE_RESP also provides insights and statistics for each
run carried out. A log file is created that documents the key
steps during the generation of the PyRESP input files. It
includes the number of unique molecules found and the
number of conformers per molecule detected. Moreover, a
second log file is created after the successful execution of
PyRESP, which contains the fit statistics provided by PyRESP
and highlights the sum of charges for each CCG, the sum of
charges of all atoms that do not belong to the respective
constraint group, and the difference between these two sums.
This information is also stored in a csv file to facilitate
integration into data analysis software for further inspection

■ EXAMPLES
Each one of the following example cases (Figure 3) will be
carried out as a multiconformer RESP fit. Refer to the
Supporting Information for details about conformer gener-
ation. The described examples focus on using the PyPE_RESP
CLI instead of PyPE_RESP input files. Detailed information
about the PyPE_RESP input file syntax can be obtained via the

Figure 2. Illustration of the definitions of intra- and intermolecular
CCGs in PyPE_RESP using arbitrary constraints. CCGs are defined
using the -c/--constraint flag and are encapsulated in
quotation marks. Three cases are shown: 1. Each CCG is defined
separately, leading to three intramolecular CCGs (top). 2. The methyl
group of compound 1 (green) and the hydroxyl group of compound 2
(red) are associated together, whereas the hydroxyl group of
compound 1 (cyan) defines a separate CCG, leading to one
intermolecular and one intramolecular CCG (middle). 3. The methyl
group of compound 1 (green) and the hydroxyl group of compound 1
(cyan) are associated together, while the hydroxyl group of compound
2 (red) forms a separate CCG (bottom). The latter example leads to a
faulty definition of an intermolecular CCG between the hydroxyl and
methyl groups of compound 1, which will force PyPE_RESP to exit
and therefore underlines the importance of adhering to the
PyPE_RESP syntax.

Figure 3. Example compounds illustrate the use of PyPE_RESP. 3:
(1R,2S)-1-(4-hydroxyphenyl)propane-1,2,3-triol. 4: (2R,4S)-4-carba-
moyl-2,4-dimethylbutanoic acid. 5: (2S)-2-((4R)-3-hydroxy-2-oxo-4-
(2-oxopropyl)pyrrolidin-1-yl)butanamide. 6: (2R)-methyl-2-(3-
benzoylphenyl)propanoate. Intramolecular CCGs are highlighted in
red, whereas groups that are part of an intermolecular charge
constraint are shown in blue.
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--input_help flag, and a template input file can be
generated via the --template flag. Input files, including
Gaussian output files and PyPE_RESP input files, for each
example are provided in the Supporting Information. Note that
all CCGs were chosen to highlight PyPE_RESP’s functionality
and not based on chemical relevance.
CASE A: Using SMARTS Patterns to Define CCGsg.

The benefits of SMARTS slicing to define an intramolecular
CCG can be illustrated using the hydroxyl group bound to the
carbon atom at position two of molecule 3 (Figure 3). Since
this compound possesses multiple hydroxyl groups, the
unambiguous SMARTS pattern to identify the group of
interest must include the neighboring aliphatic carbon atom, as
well as the aromatic carbon attached to it. This results in the
following SMARTS pattern: HOCCc. The three carbon atoms
in this sequence are not meant to be part of the final CCG and
therefore must be neglected during fitting using SMARTS
slicing. To achieve this, the three carbon atoms must be
enclosed in pipe symbols. The whole pattern must also be
enclosed in quotation marks to prevent interpretation by the
shell. Thus, the full command to identify the 2-OH group for
an intramolecular CCG is pype-resp.py --con-
straint “1:HO|CCc|”.

Notably, the hydrogen atom is not enclosed in square
brackets, unlike what is required by the SMARTS language
convention. PyPE_RESP automatically adds the brackets,
although they will be recognized if added by the user.
Identification of the target molecule by its index (1) was
chosen here for convenience, as it is the only molecule to be
parametrized. A wildcard pattern to identify the molecule
would also work.

Figure S1 highlights how for some atoms of 3 the derived
charges vary between conformers, motivating the use of a
multiconformer fit.
CASE B: Defining Intramolecular CCGs Using Atom

Indices and the RESP-ind Model. Besides the definition of
CCGs via SMARTS patterns, PyPE_RESP also allows the
definition of CCGs using atom indices, if desired. To illustrate
this, the methyl group next to the carboxylic acid group of
molecule 4 (Figure 3) is used to define an intramolecular
CCG. PyPE_RESP offers two possibilities to identify atom
indices. One option is to carry out a test run by supplying the
--test_smarts flag with the SMARTS pattern C(H)-
(H)(H)|C(O)(O)|, which retrieves the atom indices corre-
sponding to the target methyl group. The indices of the group
can then be used to define a CCG using the --constraint
flag in a production run. Alternatively, one can carry out a
PyPE_RESP run with the --mol2_only flag to generate
mol2 files, which can then be visualized to obtain the atomic
indices of the methyl group atoms. Both approaches reveal the
atoms with indices 11, 21, 22, and 23 to be part of the target
functional group. Atomic partial charges for the compound can
be obtained using the RESP-ind model, for which the “ind”
keyword must be supplied under the --ptype flag. The use of
the RESP-ind and RESP-perm models requires information
about individual atomic polarizabilities. The absolute or
relative path to a file containing this information can be
supplied under the --polariz flag (an example is provided
in the Supporting Information). Finally, the charge of the
constraint group for the methyl moiety is set to −1 by adding
the colon-separated charge after the definition of the constraint
group. The full command is pype-resp.py --con-

straint “1:11 21 22 23:-1” --ptype ind
--polariz Polarizability_info.txt

Figure S2 indicates for 4 that PyPE_RESP-derived charges
agree with those from the RESP algorithm and PyRESP.
CASE C: Defining Intermolecular Constraints by

SMARTS Matching and Wildcard Patterns. If multiple
molecules need to be parametrized, it is reasonable to identify
them via wildcard patterns instead of their CCG indices to
avoid mismatches. Intermolecular charge constraints are
defined by supplying two CCGs under one --constraint
flag. Taking molecule 5 and molecule 6 (Figure 3), the
hydroxyl group attached to the pyrrolidine ring of 5 is
constrained together with the methyl group of 6. The carbonyl
carbon and carbonyl oxygen of 5 additionally form an
intramolecular CCG, whose charge is arbitrarily set to −2.
This results in the definition of three CCGs, with two being
constrained together. Finally, the RESP-perm model is invoked
by supplying the option “perm” under the−ptype flag. The
typical command that achieves this is pype-resp.py
- - c o n s t r a i n t “ b u t a n a m i d e : O H ”
“propanoate:C(H)(H)(H)|O|:0” --constraint
“butanamide:|[C;H3]|C = O:-2” --ptype perm
--polariz Polarizability_info.txt

This example also illustrates how the charge for
intermolecular constraint groups can be set. The syntax is
identical to the one used for intramolecular CCGs, but the
total charge of the intermolecular constraint will be set to the
charge specified for the second CCG. As mentioned above, if
the charge is supposed to be zero, no specification is needed,
and it is specified only here for illustration purposes. Finally,
note that wildcard patterns identifying the respective molecules
do not contain asterisks. These are added automatically by
PyPE_RESP during the globing process.

■ DISCUSSION
We present PyPE_RESP to facilitate and standardize the
derivation of atomic partial charges following the RESP
procedure. PyPE_RESP uses the RDKit open-source chemo-
informatics package and those built into PyPE_RESP of
AmberTools to derive charges for additive or polarizable force
fields, while providing multiple means to define CCGs in
nontrivial cases. PyPE_RESP improves the reproducibility of
parametrization tasks, which would otherwise be carried out by
hand, and provides informative postrun statistics that allow
evaluating the fitting process. While most of these features are
also implemented in the R.E.D. server, PyPE_RESP offers the
benefit of being executed locally. This circumvents depending
on an external server, which eliminates issues arising from
downtime periods as well as the need to upload scientific data
and makes the resubmission of jobs easier if minor mistakes in
the command or input file were detected in a prior run. The
runtime of PyPE_RESP is comparable to that of PyRESP
(Figure S3).

We acknowledge that the syntax required by PyPE_RESP
can be overwhelming initially. However, in the context of force
field design, or comprehensive molecular design and analysis
studies, where numerous compounds must be parametrized,
the benefits of PyPE_RESP’s systematic approach stand out.
Similarly, creating SMARTS patterns to target components of
complex molecules such as multiring systems can be
troublesome, e.g., if they are intertwined. In such a case, an
inexperienced user may need to go through a lengthy trial-and-
error process to match the desired substructure. Such scenarios
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can be prevented, however, by falling back to the definition of
CCGs via atom indices, further highlighting that PyPE_RESP’s
functionality can be adapted according to system complexity.
Although PyPE_RESP offers a range of options to cover the
needs of most RESP charge derivation procedures, it does not
yet account for niche cases where additional fine-tuning of
parameters or reorientation of molecules before fitting is
required.

Finally, PyPE_RESP is compatible with most operating
systems. This includes common Linux distributions, MacOS,
and Windows 11 using the Windows Subsystem for Linux
(WSL).

■ ASSOCIATED CONTENT
Data Availability Statement
The Gaussian output files per conformer for each molecule
discussed in the Examples section, along with PyPE_RESP
input files and all files generated by PyPE_RESP for each
example case, are provided as Supporting Information.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00041.

Details on the generation of conformer ensembles and
ESP calculation for each compound discussed in the
Examples section (PDF)
Gaussian output files per conformer for each molecule
discussed in the Examples section; PyPE_RESP input
files and all files generated by PyPE_RESP for each
example case (ZIP)

■ AUTHOR INFORMATION
Corresponding Author

Holger Gohlke − Institute for Pharmaceutical and Medicinal
Chemistry & Bioeconomy Science Center (BioSC), Heinrich
Heine University Düsseldorf, 40225 Düsseldorf, Germany;
Institute of Bio- and Geosciences (IBG-4: Bioinformatics),
Forschungszentrum Jülich, 52425 Jülich, Germany;
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